Virus removal by iron oxide ceramic membranes

Autores
Fidalgo, María Marta; Gallardo, Maria V.; Yrazu, Fernando; Gentile, Guillermina; Opezzo, Oscar; Pizarro, Ramón Augusto; Poma, Hugo Ramiro; Rajal, Verónica Beatriz
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Nanoporous iron oxide ceramics were studied for the removal of virus contamination from water. Supported and unsupported iron oxide nanostructured hematite was fabricated by a green chemistry route from ferroxane nanoparticles. The material had a surface area of approximately 30 m2/g and a mean pore size of 65 nm. Bacteriophage P22 was chosen as a model for human virus. The kinetics and equilibrium of the attachment process was investigated. P22 adsorption isotherms on iron oxide were described by the Freundlich equation. Batch experiments resulted in 1.5 LRVs. Removal proceeded rapidly for the first 7 h; next, a diffusion-limited stage occurred. Dynamic attachment experiments demanded extensive recirculation to achieve significant reduction levels. Up to 3 LRV were observed. The enhanced performance can be explained by the higher iron oxide area available and the facilitated access to inner porosity sites that were previously unavailable due to slow diffusion. The role of electrostatic interactions in the attachment mechanisms was confirmed by the dependence of the isotherm on the ionic strength of the suspension medium. P22 bacteriophage is expected to attach to the iron oxide by electrostatic forces up to a pH of 6.5. DLVO theory predicts moderately well the interaction energies between P22 particles themselves and between the phage and the ceramic. However, a slight underestimation of the P22–P22 repulsive forces was evident by comparison to the experimental data.
Fil: Fidalgo, María Marta. Instituto Tecnologico de Buenos Aires. Departamento de Ingenieria Quimica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Gallardo, Maria V.. Instituto Tecnologico de Buenos Aires. Departamento de Ingenieria Quimica; Argentina
Fil: Yrazu, Fernando. Instituto Tecnologico de Buenos Aires. Departamento de Ingenieria Quimica; Argentina
Fil: Gentile, Guillermina. Instituto Tecnologico de Buenos Aires. Departamento de Ingenieria Quimica; Argentina
Fil: Opezzo, Oscar. Instituto Tecnologico de Buenos Aires. Departamento de Ingenieria Quimica; Argentina. Comisión Nacional de Energía Atómica. Gerencia de Area de Aplicaciones de la Tecnología Nuclear. Departamento de Radiobiología; Argentina
Fil: Pizarro, Ramón Augusto. Instituto Tecnologico de Buenos Aires. Departamento de Ingenieria Quimica; Argentina. Comisión Nacional de Energía Atómica. Gerencia de Area de Aplicaciones de la Tecnología Nuclear. Departamento de Radiobiología; Argentina
Fil: Poma, Hugo Ramiro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Salta. Instituto de Investigación para la Industria Química (i); Argentina
Fil: Rajal, Verónica Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Salta. Instituto de Investigación para la Industria Química (i); Argentina
Materia
Ceramic Membranes
Iron Oxides
Nanoparticles
Virus Contamination
Water Treatment
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/4745

id CONICETDig_e5be7bf5265df0efcd7e4729a3e2ed33
oai_identifier_str oai:ri.conicet.gov.ar:11336/4745
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Virus removal by iron oxide ceramic membranesFidalgo, María MartaGallardo, Maria V.Yrazu, FernandoGentile, GuillerminaOpezzo, OscarPizarro, Ramón AugustoPoma, Hugo RamiroRajal, Verónica BeatrizCeramic MembranesIron OxidesNanoparticlesVirus ContaminationWater Treatmenthttps://purl.org/becyt/ford/2.7https://purl.org/becyt/ford/2Nanoporous iron oxide ceramics were studied for the removal of virus contamination from water. Supported and unsupported iron oxide nanostructured hematite was fabricated by a green chemistry route from ferroxane nanoparticles. The material had a surface area of approximately 30 m2/g and a mean pore size of 65 nm. Bacteriophage P22 was chosen as a model for human virus. The kinetics and equilibrium of the attachment process was investigated. P22 adsorption isotherms on iron oxide were described by the Freundlich equation. Batch experiments resulted in 1.5 LRVs. Removal proceeded rapidly for the first 7 h; next, a diffusion-limited stage occurred. Dynamic attachment experiments demanded extensive recirculation to achieve significant reduction levels. Up to 3 LRV were observed. The enhanced performance can be explained by the higher iron oxide area available and the facilitated access to inner porosity sites that were previously unavailable due to slow diffusion. The role of electrostatic interactions in the attachment mechanisms was confirmed by the dependence of the isotherm on the ionic strength of the suspension medium. P22 bacteriophage is expected to attach to the iron oxide by electrostatic forces up to a pH of 6.5. DLVO theory predicts moderately well the interaction energies between P22 particles themselves and between the phage and the ceramic. However, a slight underestimation of the P22–P22 repulsive forces was evident by comparison to the experimental data.Fil: Fidalgo, María Marta. Instituto Tecnologico de Buenos Aires. Departamento de Ingenieria Quimica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Gallardo, Maria V.. Instituto Tecnologico de Buenos Aires. Departamento de Ingenieria Quimica; ArgentinaFil: Yrazu, Fernando. Instituto Tecnologico de Buenos Aires. Departamento de Ingenieria Quimica; ArgentinaFil: Gentile, Guillermina. Instituto Tecnologico de Buenos Aires. Departamento de Ingenieria Quimica; ArgentinaFil: Opezzo, Oscar. Instituto Tecnologico de Buenos Aires. Departamento de Ingenieria Quimica; Argentina. Comisión Nacional de Energía Atómica. Gerencia de Area de Aplicaciones de la Tecnología Nuclear. Departamento de Radiobiología; ArgentinaFil: Pizarro, Ramón Augusto. Instituto Tecnologico de Buenos Aires. Departamento de Ingenieria Quimica; Argentina. Comisión Nacional de Energía Atómica. Gerencia de Area de Aplicaciones de la Tecnología Nuclear. Departamento de Radiobiología; ArgentinaFil: Poma, Hugo Ramiro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Salta. Instituto de Investigación para la Industria Química (i); ArgentinaFil: Rajal, Verónica Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Salta. Instituto de Investigación para la Industria Química (i); ArgentinaElsevier2014-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/4745Fidalgo, María Marta; Gallardo, Maria V.; Yrazu, Fernando; Gentile, Guillermina; Opezzo, Oscar; et al.; Virus removal by iron oxide ceramic membranes; Elsevier; Journal of Environmental Chemical Engineering; 2; 3; 8-2014; 1831-18402213-3437enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S2213343714001729info:eu-repo/semantics/altIdentifier/hdl/http://dx.doi.org/10.1016/j.jece.2014.08.006info:eu-repo/semantics/altIdentifier/issn/2213-3437info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:09:40Zoai:ri.conicet.gov.ar:11336/4745instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:09:40.532CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Virus removal by iron oxide ceramic membranes
title Virus removal by iron oxide ceramic membranes
spellingShingle Virus removal by iron oxide ceramic membranes
Fidalgo, María Marta
Ceramic Membranes
Iron Oxides
Nanoparticles
Virus Contamination
Water Treatment
title_short Virus removal by iron oxide ceramic membranes
title_full Virus removal by iron oxide ceramic membranes
title_fullStr Virus removal by iron oxide ceramic membranes
title_full_unstemmed Virus removal by iron oxide ceramic membranes
title_sort Virus removal by iron oxide ceramic membranes
dc.creator.none.fl_str_mv Fidalgo, María Marta
Gallardo, Maria V.
Yrazu, Fernando
Gentile, Guillermina
Opezzo, Oscar
Pizarro, Ramón Augusto
Poma, Hugo Ramiro
Rajal, Verónica Beatriz
author Fidalgo, María Marta
author_facet Fidalgo, María Marta
Gallardo, Maria V.
Yrazu, Fernando
Gentile, Guillermina
Opezzo, Oscar
Pizarro, Ramón Augusto
Poma, Hugo Ramiro
Rajal, Verónica Beatriz
author_role author
author2 Gallardo, Maria V.
Yrazu, Fernando
Gentile, Guillermina
Opezzo, Oscar
Pizarro, Ramón Augusto
Poma, Hugo Ramiro
Rajal, Verónica Beatriz
author2_role author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Ceramic Membranes
Iron Oxides
Nanoparticles
Virus Contamination
Water Treatment
topic Ceramic Membranes
Iron Oxides
Nanoparticles
Virus Contamination
Water Treatment
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.7
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Nanoporous iron oxide ceramics were studied for the removal of virus contamination from water. Supported and unsupported iron oxide nanostructured hematite was fabricated by a green chemistry route from ferroxane nanoparticles. The material had a surface area of approximately 30 m2/g and a mean pore size of 65 nm. Bacteriophage P22 was chosen as a model for human virus. The kinetics and equilibrium of the attachment process was investigated. P22 adsorption isotherms on iron oxide were described by the Freundlich equation. Batch experiments resulted in 1.5 LRVs. Removal proceeded rapidly for the first 7 h; next, a diffusion-limited stage occurred. Dynamic attachment experiments demanded extensive recirculation to achieve significant reduction levels. Up to 3 LRV were observed. The enhanced performance can be explained by the higher iron oxide area available and the facilitated access to inner porosity sites that were previously unavailable due to slow diffusion. The role of electrostatic interactions in the attachment mechanisms was confirmed by the dependence of the isotherm on the ionic strength of the suspension medium. P22 bacteriophage is expected to attach to the iron oxide by electrostatic forces up to a pH of 6.5. DLVO theory predicts moderately well the interaction energies between P22 particles themselves and between the phage and the ceramic. However, a slight underestimation of the P22–P22 repulsive forces was evident by comparison to the experimental data.
Fil: Fidalgo, María Marta. Instituto Tecnologico de Buenos Aires. Departamento de Ingenieria Quimica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Gallardo, Maria V.. Instituto Tecnologico de Buenos Aires. Departamento de Ingenieria Quimica; Argentina
Fil: Yrazu, Fernando. Instituto Tecnologico de Buenos Aires. Departamento de Ingenieria Quimica; Argentina
Fil: Gentile, Guillermina. Instituto Tecnologico de Buenos Aires. Departamento de Ingenieria Quimica; Argentina
Fil: Opezzo, Oscar. Instituto Tecnologico de Buenos Aires. Departamento de Ingenieria Quimica; Argentina. Comisión Nacional de Energía Atómica. Gerencia de Area de Aplicaciones de la Tecnología Nuclear. Departamento de Radiobiología; Argentina
Fil: Pizarro, Ramón Augusto. Instituto Tecnologico de Buenos Aires. Departamento de Ingenieria Quimica; Argentina. Comisión Nacional de Energía Atómica. Gerencia de Area de Aplicaciones de la Tecnología Nuclear. Departamento de Radiobiología; Argentina
Fil: Poma, Hugo Ramiro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Salta. Instituto de Investigación para la Industria Química (i); Argentina
Fil: Rajal, Verónica Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Salta. Instituto de Investigación para la Industria Química (i); Argentina
description Nanoporous iron oxide ceramics were studied for the removal of virus contamination from water. Supported and unsupported iron oxide nanostructured hematite was fabricated by a green chemistry route from ferroxane nanoparticles. The material had a surface area of approximately 30 m2/g and a mean pore size of 65 nm. Bacteriophage P22 was chosen as a model for human virus. The kinetics and equilibrium of the attachment process was investigated. P22 adsorption isotherms on iron oxide were described by the Freundlich equation. Batch experiments resulted in 1.5 LRVs. Removal proceeded rapidly for the first 7 h; next, a diffusion-limited stage occurred. Dynamic attachment experiments demanded extensive recirculation to achieve significant reduction levels. Up to 3 LRV were observed. The enhanced performance can be explained by the higher iron oxide area available and the facilitated access to inner porosity sites that were previously unavailable due to slow diffusion. The role of electrostatic interactions in the attachment mechanisms was confirmed by the dependence of the isotherm on the ionic strength of the suspension medium. P22 bacteriophage is expected to attach to the iron oxide by electrostatic forces up to a pH of 6.5. DLVO theory predicts moderately well the interaction energies between P22 particles themselves and between the phage and the ceramic. However, a slight underestimation of the P22–P22 repulsive forces was evident by comparison to the experimental data.
publishDate 2014
dc.date.none.fl_str_mv 2014-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/4745
Fidalgo, María Marta; Gallardo, Maria V.; Yrazu, Fernando; Gentile, Guillermina; Opezzo, Oscar; et al.; Virus removal by iron oxide ceramic membranes; Elsevier; Journal of Environmental Chemical Engineering; 2; 3; 8-2014; 1831-1840
2213-3437
url http://hdl.handle.net/11336/4745
identifier_str_mv Fidalgo, María Marta; Gallardo, Maria V.; Yrazu, Fernando; Gentile, Guillermina; Opezzo, Oscar; et al.; Virus removal by iron oxide ceramic membranes; Elsevier; Journal of Environmental Chemical Engineering; 2; 3; 8-2014; 1831-1840
2213-3437
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S2213343714001729
info:eu-repo/semantics/altIdentifier/hdl/http://dx.doi.org/10.1016/j.jece.2014.08.006
info:eu-repo/semantics/altIdentifier/issn/2213-3437
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613977391235072
score 13.070432