Surface and interface interplay on the oxidizing temperature of iron oxide and Au-iron oxide core-shell nanoparticles
- Autores
- Sarveena; Muraca, Diego; Mendoza Zélis, Pedro; Javed, Y.; Ahmad, N.; Vargas, Jose Marcelo; Moscoso Londoño, O.; Knobel, M.; Singh, M.; Sharma, S.K.
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This article presents the effect of oxidation temperature on shape anisotropy, phase purity and growth of core-shell heterostructures and consequently their effect on structure-property relationships. Iron oxide and Au-iron oxide nanocomposites were synthesized by a thermal decomposition method by passing pure oxygen at different temperatures (125-250 °C). The prepared nanoparticles were surface functionalized by organic molecules; the presence of the organic canopy prevented both direct particle contact as well as further oxidation, resulting in the stability of the nanoparticles. We have observed a systematic improvement in the core and shell shape through tuning the reaction time as well as the oxidizing temperatures. Spherical and spherical triangular shaped core-shell structures have been obtained at an optimum oxidation temperature of 125 °C and 150 °C for 30 minutes. However, further increase in the temperature as well as oxidation time results in core-shell structure amendment and results in fully grown core-shell heterostructures. As stability and ageing issues limit the use of nanoparticles in applications, to ensure the stability of the prepared iron oxide nanoparticles we performed XRD analysis after more than a year and they remained intact showing no ageing effect. Specific absorption rate values useful for magnetic fluid hyperthermia were obtained for two samples on the basis of detailed characterization using X-ray diffraction, high-resolution transmission electron microscopy, Mössbauer spectroscopy, and dc-magnetization experiments.
Fil: Sarveena. Himachal Pradesh University; India
Fil: Muraca, Diego. Universidade Estadual de Campinas; Brasil. Universidade Federal Do Abc;
Fil: Mendoza Zélis, Pedro. Instituto de Física la Plata (conicet- Universidad Nacional de la Plata); Argentina
Fil: Javed, Y.. University Of Agriculture, Faisalabad; Pakistán
Fil: Ahmad, N.. Université Paris Diderot - Paris 7; Francia
Fil: Vargas, Jose Marcelo. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Moscoso Londoño, O.. Universidade Estadual de Campinas; Brasil
Fil: Knobel, M.. Universidade Estadual de Campinas; Brasil. Centro Nacional de Pesquisa Em Energia E Materiais;
Fil: Singh, M.. Himachal Pradesh University; India
Fil: Sharma, S.K.. Universidade Federal Do Maranhao; . Himachal Pradesh University; India - Materia
-
MULTIFUNCTIONAL NANOPARTICLES
IRON-OXIDE
MAGNETISM
SUPERPARAMAGNETISM - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/70904
Ver los metadatos del registro completo
id |
CONICETDig_e857ea6fd26f04314ded7b26887f0ec8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/70904 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Surface and interface interplay on the oxidizing temperature of iron oxide and Au-iron oxide core-shell nanoparticlesSarveenaMuraca, DiegoMendoza Zélis, PedroJaved, Y.Ahmad, N.Vargas, Jose MarceloMoscoso Londoño, O.Knobel, M.Singh, M.Sharma, S.K.MULTIFUNCTIONAL NANOPARTICLESIRON-OXIDEMAGNETISMSUPERPARAMAGNETISMhttps://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2This article presents the effect of oxidation temperature on shape anisotropy, phase purity and growth of core-shell heterostructures and consequently their effect on structure-property relationships. Iron oxide and Au-iron oxide nanocomposites were synthesized by a thermal decomposition method by passing pure oxygen at different temperatures (125-250 °C). The prepared nanoparticles were surface functionalized by organic molecules; the presence of the organic canopy prevented both direct particle contact as well as further oxidation, resulting in the stability of the nanoparticles. We have observed a systematic improvement in the core and shell shape through tuning the reaction time as well as the oxidizing temperatures. Spherical and spherical triangular shaped core-shell structures have been obtained at an optimum oxidation temperature of 125 °C and 150 °C for 30 minutes. However, further increase in the temperature as well as oxidation time results in core-shell structure amendment and results in fully grown core-shell heterostructures. As stability and ageing issues limit the use of nanoparticles in applications, to ensure the stability of the prepared iron oxide nanoparticles we performed XRD analysis after more than a year and they remained intact showing no ageing effect. Specific absorption rate values useful for magnetic fluid hyperthermia were obtained for two samples on the basis of detailed characterization using X-ray diffraction, high-resolution transmission electron microscopy, Mössbauer spectroscopy, and dc-magnetization experiments.Fil: Sarveena. Himachal Pradesh University; IndiaFil: Muraca, Diego. Universidade Estadual de Campinas; Brasil. Universidade Federal Do Abc;Fil: Mendoza Zélis, Pedro. Instituto de Física la Plata (conicet- Universidad Nacional de la Plata); ArgentinaFil: Javed, Y.. University Of Agriculture, Faisalabad; PakistánFil: Ahmad, N.. Université Paris Diderot - Paris 7; FranciaFil: Vargas, Jose Marcelo. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Moscoso Londoño, O.. Universidade Estadual de Campinas; BrasilFil: Knobel, M.. Universidade Estadual de Campinas; Brasil. Centro Nacional de Pesquisa Em Energia E Materiais;Fil: Singh, M.. Himachal Pradesh University; IndiaFil: Sharma, S.K.. Universidade Federal Do Maranhao; . Himachal Pradesh University; IndiaRoyal Society of Chemistry2016-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/70904Sarveena; Muraca, Diego; Mendoza Zélis, Pedro; Javed, Y.; Ahmad, N.; et al.; Surface and interface interplay on the oxidizing temperature of iron oxide and Au-iron oxide core-shell nanoparticles; Royal Society of Chemistry; RSC Advances; 6; 74; 7-2016; 70394-704042046-2069CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1039/C6RA15610Jinfo:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/Content/ArticleLanding/2016/RA/C6RA15610J#!divAbstractinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:03:01Zoai:ri.conicet.gov.ar:11336/70904instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:03:01.728CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Surface and interface interplay on the oxidizing temperature of iron oxide and Au-iron oxide core-shell nanoparticles |
title |
Surface and interface interplay on the oxidizing temperature of iron oxide and Au-iron oxide core-shell nanoparticles |
spellingShingle |
Surface and interface interplay on the oxidizing temperature of iron oxide and Au-iron oxide core-shell nanoparticles Sarveena MULTIFUNCTIONAL NANOPARTICLES IRON-OXIDE MAGNETISM SUPERPARAMAGNETISM |
title_short |
Surface and interface interplay on the oxidizing temperature of iron oxide and Au-iron oxide core-shell nanoparticles |
title_full |
Surface and interface interplay on the oxidizing temperature of iron oxide and Au-iron oxide core-shell nanoparticles |
title_fullStr |
Surface and interface interplay on the oxidizing temperature of iron oxide and Au-iron oxide core-shell nanoparticles |
title_full_unstemmed |
Surface and interface interplay on the oxidizing temperature of iron oxide and Au-iron oxide core-shell nanoparticles |
title_sort |
Surface and interface interplay on the oxidizing temperature of iron oxide and Au-iron oxide core-shell nanoparticles |
dc.creator.none.fl_str_mv |
Sarveena Muraca, Diego Mendoza Zélis, Pedro Javed, Y. Ahmad, N. Vargas, Jose Marcelo Moscoso Londoño, O. Knobel, M. Singh, M. Sharma, S.K. |
author |
Sarveena |
author_facet |
Sarveena Muraca, Diego Mendoza Zélis, Pedro Javed, Y. Ahmad, N. Vargas, Jose Marcelo Moscoso Londoño, O. Knobel, M. Singh, M. Sharma, S.K. |
author_role |
author |
author2 |
Muraca, Diego Mendoza Zélis, Pedro Javed, Y. Ahmad, N. Vargas, Jose Marcelo Moscoso Londoño, O. Knobel, M. Singh, M. Sharma, S.K. |
author2_role |
author author author author author author author author author |
dc.subject.none.fl_str_mv |
MULTIFUNCTIONAL NANOPARTICLES IRON-OXIDE MAGNETISM SUPERPARAMAGNETISM |
topic |
MULTIFUNCTIONAL NANOPARTICLES IRON-OXIDE MAGNETISM SUPERPARAMAGNETISM |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.10 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
This article presents the effect of oxidation temperature on shape anisotropy, phase purity and growth of core-shell heterostructures and consequently their effect on structure-property relationships. Iron oxide and Au-iron oxide nanocomposites were synthesized by a thermal decomposition method by passing pure oxygen at different temperatures (125-250 °C). The prepared nanoparticles were surface functionalized by organic molecules; the presence of the organic canopy prevented both direct particle contact as well as further oxidation, resulting in the stability of the nanoparticles. We have observed a systematic improvement in the core and shell shape through tuning the reaction time as well as the oxidizing temperatures. Spherical and spherical triangular shaped core-shell structures have been obtained at an optimum oxidation temperature of 125 °C and 150 °C for 30 minutes. However, further increase in the temperature as well as oxidation time results in core-shell structure amendment and results in fully grown core-shell heterostructures. As stability and ageing issues limit the use of nanoparticles in applications, to ensure the stability of the prepared iron oxide nanoparticles we performed XRD analysis after more than a year and they remained intact showing no ageing effect. Specific absorption rate values useful for magnetic fluid hyperthermia were obtained for two samples on the basis of detailed characterization using X-ray diffraction, high-resolution transmission electron microscopy, Mössbauer spectroscopy, and dc-magnetization experiments. Fil: Sarveena. Himachal Pradesh University; India Fil: Muraca, Diego. Universidade Estadual de Campinas; Brasil. Universidade Federal Do Abc; Fil: Mendoza Zélis, Pedro. Instituto de Física la Plata (conicet- Universidad Nacional de la Plata); Argentina Fil: Javed, Y.. University Of Agriculture, Faisalabad; Pakistán Fil: Ahmad, N.. Université Paris Diderot - Paris 7; Francia Fil: Vargas, Jose Marcelo. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina Fil: Moscoso Londoño, O.. Universidade Estadual de Campinas; Brasil Fil: Knobel, M.. Universidade Estadual de Campinas; Brasil. Centro Nacional de Pesquisa Em Energia E Materiais; Fil: Singh, M.. Himachal Pradesh University; India Fil: Sharma, S.K.. Universidade Federal Do Maranhao; . Himachal Pradesh University; India |
description |
This article presents the effect of oxidation temperature on shape anisotropy, phase purity and growth of core-shell heterostructures and consequently their effect on structure-property relationships. Iron oxide and Au-iron oxide nanocomposites were synthesized by a thermal decomposition method by passing pure oxygen at different temperatures (125-250 °C). The prepared nanoparticles were surface functionalized by organic molecules; the presence of the organic canopy prevented both direct particle contact as well as further oxidation, resulting in the stability of the nanoparticles. We have observed a systematic improvement in the core and shell shape through tuning the reaction time as well as the oxidizing temperatures. Spherical and spherical triangular shaped core-shell structures have been obtained at an optimum oxidation temperature of 125 °C and 150 °C for 30 minutes. However, further increase in the temperature as well as oxidation time results in core-shell structure amendment and results in fully grown core-shell heterostructures. As stability and ageing issues limit the use of nanoparticles in applications, to ensure the stability of the prepared iron oxide nanoparticles we performed XRD analysis after more than a year and they remained intact showing no ageing effect. Specific absorption rate values useful for magnetic fluid hyperthermia were obtained for two samples on the basis of detailed characterization using X-ray diffraction, high-resolution transmission electron microscopy, Mössbauer spectroscopy, and dc-magnetization experiments. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/70904 Sarveena; Muraca, Diego; Mendoza Zélis, Pedro; Javed, Y.; Ahmad, N.; et al.; Surface and interface interplay on the oxidizing temperature of iron oxide and Au-iron oxide core-shell nanoparticles; Royal Society of Chemistry; RSC Advances; 6; 74; 7-2016; 70394-70404 2046-2069 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/70904 |
identifier_str_mv |
Sarveena; Muraca, Diego; Mendoza Zélis, Pedro; Javed, Y.; Ahmad, N.; et al.; Surface and interface interplay on the oxidizing temperature of iron oxide and Au-iron oxide core-shell nanoparticles; Royal Society of Chemistry; RSC Advances; 6; 74; 7-2016; 70394-70404 2046-2069 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1039/C6RA15610J info:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/Content/ArticleLanding/2016/RA/C6RA15610J#!divAbstract |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Royal Society of Chemistry |
publisher.none.fl_str_mv |
Royal Society of Chemistry |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980055790125056 |
score |
12.993085 |