Surface and interface interplay on the oxidizing temperature of iron oxide and Au-iron oxide core-shell nanoparticles

Autores
Sarveena; Muraca, Diego; Mendoza Zélis, Pedro; Javed, Y.; Ahmad, N.; Vargas, Jose Marcelo; Moscoso Londoño, O.; Knobel, M.; Singh, M.; Sharma, S.K.
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This article presents the effect of oxidation temperature on shape anisotropy, phase purity and growth of core-shell heterostructures and consequently their effect on structure-property relationships. Iron oxide and Au-iron oxide nanocomposites were synthesized by a thermal decomposition method by passing pure oxygen at different temperatures (125-250 °C). The prepared nanoparticles were surface functionalized by organic molecules; the presence of the organic canopy prevented both direct particle contact as well as further oxidation, resulting in the stability of the nanoparticles. We have observed a systematic improvement in the core and shell shape through tuning the reaction time as well as the oxidizing temperatures. Spherical and spherical triangular shaped core-shell structures have been obtained at an optimum oxidation temperature of 125 °C and 150 °C for 30 minutes. However, further increase in the temperature as well as oxidation time results in core-shell structure amendment and results in fully grown core-shell heterostructures. As stability and ageing issues limit the use of nanoparticles in applications, to ensure the stability of the prepared iron oxide nanoparticles we performed XRD analysis after more than a year and they remained intact showing no ageing effect. Specific absorption rate values useful for magnetic fluid hyperthermia were obtained for two samples on the basis of detailed characterization using X-ray diffraction, high-resolution transmission electron microscopy, Mössbauer spectroscopy, and dc-magnetization experiments.
Fil: Sarveena. Himachal Pradesh University; India
Fil: Muraca, Diego. Universidade Estadual de Campinas; Brasil. Universidade Federal Do Abc;
Fil: Mendoza Zélis, Pedro. Instituto de Física la Plata (conicet- Universidad Nacional de la Plata); Argentina
Fil: Javed, Y.. University Of Agriculture, Faisalabad; Pakistán
Fil: Ahmad, N.. Université Paris Diderot - Paris 7; Francia
Fil: Vargas, Jose Marcelo. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Moscoso Londoño, O.. Universidade Estadual de Campinas; Brasil
Fil: Knobel, M.. Universidade Estadual de Campinas; Brasil. Centro Nacional de Pesquisa Em Energia E Materiais;
Fil: Singh, M.. Himachal Pradesh University; India
Fil: Sharma, S.K.. Universidade Federal Do Maranhao; . Himachal Pradesh University; India
Materia
MULTIFUNCTIONAL NANOPARTICLES
IRON-OXIDE
MAGNETISM
SUPERPARAMAGNETISM
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/70904

id CONICETDig_e857ea6fd26f04314ded7b26887f0ec8
oai_identifier_str oai:ri.conicet.gov.ar:11336/70904
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Surface and interface interplay on the oxidizing temperature of iron oxide and Au-iron oxide core-shell nanoparticlesSarveenaMuraca, DiegoMendoza Zélis, PedroJaved, Y.Ahmad, N.Vargas, Jose MarceloMoscoso Londoño, O.Knobel, M.Singh, M.Sharma, S.K.MULTIFUNCTIONAL NANOPARTICLESIRON-OXIDEMAGNETISMSUPERPARAMAGNETISMhttps://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2This article presents the effect of oxidation temperature on shape anisotropy, phase purity and growth of core-shell heterostructures and consequently their effect on structure-property relationships. Iron oxide and Au-iron oxide nanocomposites were synthesized by a thermal decomposition method by passing pure oxygen at different temperatures (125-250 °C). The prepared nanoparticles were surface functionalized by organic molecules; the presence of the organic canopy prevented both direct particle contact as well as further oxidation, resulting in the stability of the nanoparticles. We have observed a systematic improvement in the core and shell shape through tuning the reaction time as well as the oxidizing temperatures. Spherical and spherical triangular shaped core-shell structures have been obtained at an optimum oxidation temperature of 125 °C and 150 °C for 30 minutes. However, further increase in the temperature as well as oxidation time results in core-shell structure amendment and results in fully grown core-shell heterostructures. As stability and ageing issues limit the use of nanoparticles in applications, to ensure the stability of the prepared iron oxide nanoparticles we performed XRD analysis after more than a year and they remained intact showing no ageing effect. Specific absorption rate values useful for magnetic fluid hyperthermia were obtained for two samples on the basis of detailed characterization using X-ray diffraction, high-resolution transmission electron microscopy, Mössbauer spectroscopy, and dc-magnetization experiments.Fil: Sarveena. Himachal Pradesh University; IndiaFil: Muraca, Diego. Universidade Estadual de Campinas; Brasil. Universidade Federal Do Abc;Fil: Mendoza Zélis, Pedro. Instituto de Física la Plata (conicet- Universidad Nacional de la Plata); ArgentinaFil: Javed, Y.. University Of Agriculture, Faisalabad; PakistánFil: Ahmad, N.. Université Paris Diderot - Paris 7; FranciaFil: Vargas, Jose Marcelo. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Moscoso Londoño, O.. Universidade Estadual de Campinas; BrasilFil: Knobel, M.. Universidade Estadual de Campinas; Brasil. Centro Nacional de Pesquisa Em Energia E Materiais;Fil: Singh, M.. Himachal Pradesh University; IndiaFil: Sharma, S.K.. Universidade Federal Do Maranhao; . Himachal Pradesh University; IndiaRoyal Society of Chemistry2016-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/70904Sarveena; Muraca, Diego; Mendoza Zélis, Pedro; Javed, Y.; Ahmad, N.; et al.; Surface and interface interplay on the oxidizing temperature of iron oxide and Au-iron oxide core-shell nanoparticles; Royal Society of Chemistry; RSC Advances; 6; 74; 7-2016; 70394-704042046-2069CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1039/C6RA15610Jinfo:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/Content/ArticleLanding/2016/RA/C6RA15610J#!divAbstractinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:03:01Zoai:ri.conicet.gov.ar:11336/70904instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:03:01.728CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Surface and interface interplay on the oxidizing temperature of iron oxide and Au-iron oxide core-shell nanoparticles
title Surface and interface interplay on the oxidizing temperature of iron oxide and Au-iron oxide core-shell nanoparticles
spellingShingle Surface and interface interplay on the oxidizing temperature of iron oxide and Au-iron oxide core-shell nanoparticles
Sarveena
MULTIFUNCTIONAL NANOPARTICLES
IRON-OXIDE
MAGNETISM
SUPERPARAMAGNETISM
title_short Surface and interface interplay on the oxidizing temperature of iron oxide and Au-iron oxide core-shell nanoparticles
title_full Surface and interface interplay on the oxidizing temperature of iron oxide and Au-iron oxide core-shell nanoparticles
title_fullStr Surface and interface interplay on the oxidizing temperature of iron oxide and Au-iron oxide core-shell nanoparticles
title_full_unstemmed Surface and interface interplay on the oxidizing temperature of iron oxide and Au-iron oxide core-shell nanoparticles
title_sort Surface and interface interplay on the oxidizing temperature of iron oxide and Au-iron oxide core-shell nanoparticles
dc.creator.none.fl_str_mv Sarveena
Muraca, Diego
Mendoza Zélis, Pedro
Javed, Y.
Ahmad, N.
Vargas, Jose Marcelo
Moscoso Londoño, O.
Knobel, M.
Singh, M.
Sharma, S.K.
author Sarveena
author_facet Sarveena
Muraca, Diego
Mendoza Zélis, Pedro
Javed, Y.
Ahmad, N.
Vargas, Jose Marcelo
Moscoso Londoño, O.
Knobel, M.
Singh, M.
Sharma, S.K.
author_role author
author2 Muraca, Diego
Mendoza Zélis, Pedro
Javed, Y.
Ahmad, N.
Vargas, Jose Marcelo
Moscoso Londoño, O.
Knobel, M.
Singh, M.
Sharma, S.K.
author2_role author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv MULTIFUNCTIONAL NANOPARTICLES
IRON-OXIDE
MAGNETISM
SUPERPARAMAGNETISM
topic MULTIFUNCTIONAL NANOPARTICLES
IRON-OXIDE
MAGNETISM
SUPERPARAMAGNETISM
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.10
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv This article presents the effect of oxidation temperature on shape anisotropy, phase purity and growth of core-shell heterostructures and consequently their effect on structure-property relationships. Iron oxide and Au-iron oxide nanocomposites were synthesized by a thermal decomposition method by passing pure oxygen at different temperatures (125-250 °C). The prepared nanoparticles were surface functionalized by organic molecules; the presence of the organic canopy prevented both direct particle contact as well as further oxidation, resulting in the stability of the nanoparticles. We have observed a systematic improvement in the core and shell shape through tuning the reaction time as well as the oxidizing temperatures. Spherical and spherical triangular shaped core-shell structures have been obtained at an optimum oxidation temperature of 125 °C and 150 °C for 30 minutes. However, further increase in the temperature as well as oxidation time results in core-shell structure amendment and results in fully grown core-shell heterostructures. As stability and ageing issues limit the use of nanoparticles in applications, to ensure the stability of the prepared iron oxide nanoparticles we performed XRD analysis after more than a year and they remained intact showing no ageing effect. Specific absorption rate values useful for magnetic fluid hyperthermia were obtained for two samples on the basis of detailed characterization using X-ray diffraction, high-resolution transmission electron microscopy, Mössbauer spectroscopy, and dc-magnetization experiments.
Fil: Sarveena. Himachal Pradesh University; India
Fil: Muraca, Diego. Universidade Estadual de Campinas; Brasil. Universidade Federal Do Abc;
Fil: Mendoza Zélis, Pedro. Instituto de Física la Plata (conicet- Universidad Nacional de la Plata); Argentina
Fil: Javed, Y.. University Of Agriculture, Faisalabad; Pakistán
Fil: Ahmad, N.. Université Paris Diderot - Paris 7; Francia
Fil: Vargas, Jose Marcelo. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Moscoso Londoño, O.. Universidade Estadual de Campinas; Brasil
Fil: Knobel, M.. Universidade Estadual de Campinas; Brasil. Centro Nacional de Pesquisa Em Energia E Materiais;
Fil: Singh, M.. Himachal Pradesh University; India
Fil: Sharma, S.K.. Universidade Federal Do Maranhao; . Himachal Pradesh University; India
description This article presents the effect of oxidation temperature on shape anisotropy, phase purity and growth of core-shell heterostructures and consequently their effect on structure-property relationships. Iron oxide and Au-iron oxide nanocomposites were synthesized by a thermal decomposition method by passing pure oxygen at different temperatures (125-250 °C). The prepared nanoparticles were surface functionalized by organic molecules; the presence of the organic canopy prevented both direct particle contact as well as further oxidation, resulting in the stability of the nanoparticles. We have observed a systematic improvement in the core and shell shape through tuning the reaction time as well as the oxidizing temperatures. Spherical and spherical triangular shaped core-shell structures have been obtained at an optimum oxidation temperature of 125 °C and 150 °C for 30 minutes. However, further increase in the temperature as well as oxidation time results in core-shell structure amendment and results in fully grown core-shell heterostructures. As stability and ageing issues limit the use of nanoparticles in applications, to ensure the stability of the prepared iron oxide nanoparticles we performed XRD analysis after more than a year and they remained intact showing no ageing effect. Specific absorption rate values useful for magnetic fluid hyperthermia were obtained for two samples on the basis of detailed characterization using X-ray diffraction, high-resolution transmission electron microscopy, Mössbauer spectroscopy, and dc-magnetization experiments.
publishDate 2016
dc.date.none.fl_str_mv 2016-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/70904
Sarveena; Muraca, Diego; Mendoza Zélis, Pedro; Javed, Y.; Ahmad, N.; et al.; Surface and interface interplay on the oxidizing temperature of iron oxide and Au-iron oxide core-shell nanoparticles; Royal Society of Chemistry; RSC Advances; 6; 74; 7-2016; 70394-70404
2046-2069
CONICET Digital
CONICET
url http://hdl.handle.net/11336/70904
identifier_str_mv Sarveena; Muraca, Diego; Mendoza Zélis, Pedro; Javed, Y.; Ahmad, N.; et al.; Surface and interface interplay on the oxidizing temperature of iron oxide and Au-iron oxide core-shell nanoparticles; Royal Society of Chemistry; RSC Advances; 6; 74; 7-2016; 70394-70404
2046-2069
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1039/C6RA15610J
info:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/Content/ArticleLanding/2016/RA/C6RA15610J#!divAbstract
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Royal Society of Chemistry
publisher.none.fl_str_mv Royal Society of Chemistry
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980055790125056
score 12.993085