Validation of a sampling plan to generate food composition data
- Autores
- Samman, Norma Cristina; Gimenez, M. A.; Bassett, Maria Natalia; Lobo, Manuel Oscar; Marcoleri, Maria Elena
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A methodology to develop systematic plans for food sampling was proposed. Long life whole and skimmed milk, and sunflower oil were selected to validate the methodology in Argentina. Fatty acid profile in all foods, proximal composition, and calcium’s content in milk were determined with AOAC methods. The number of samples (n) was calculated applying Cochran’s formula with variation coefficients ⩽12% and an estimate error (r) maximum permissible ⩽5% for calcium content in milks and unsaturated fatty acids in oil. n were 9, 11 and 21 for long life whole and skimmed milk, and sunflower oil respectively. Sample units were randomly collected from production sites and sent to labs. Calculated r with experimental data was ⩽10%, indicating high accuracy in the determination of analyte content of greater variability and reliability of the proposed sampling plan. The methodology is an adequate and useful tool to develop sampling plans for food composition analysis.
Fil: Samman, Norma Cristina. Universidad Nacional de Jujuy. Facultad de Ingeniería; Argentina
Fil: Gimenez, M. A.. Universidad Nacional de Jujuy. Facultad de Ingeniería; Argentina
Fil: Bassett, Maria Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; Argentina
Fil: Lobo, Manuel Oscar. Universidad Nacional de Jujuy. Facultad de Ingeniería; Argentina
Fil: Marcoleri, Maria Elena. Universidad Nacional de Jujuy; Argentina - Materia
-
Sampling Plan
Methodology Validation
Food Composition
Variability - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/48163
Ver los metadatos del registro completo
id |
CONICETDig_e50cb7d975c4b7b18b00cb155fefed86 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/48163 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Validation of a sampling plan to generate food composition dataSamman, Norma CristinaGimenez, M. A.Bassett, Maria NataliaLobo, Manuel OscarMarcoleri, Maria ElenaSampling PlanMethodology ValidationFood CompositionVariabilityhttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2A methodology to develop systematic plans for food sampling was proposed. Long life whole and skimmed milk, and sunflower oil were selected to validate the methodology in Argentina. Fatty acid profile in all foods, proximal composition, and calcium’s content in milk were determined with AOAC methods. The number of samples (n) was calculated applying Cochran’s formula with variation coefficients ⩽12% and an estimate error (r) maximum permissible ⩽5% for calcium content in milks and unsaturated fatty acids in oil. n were 9, 11 and 21 for long life whole and skimmed milk, and sunflower oil respectively. Sample units were randomly collected from production sites and sent to labs. Calculated r with experimental data was ⩽10%, indicating high accuracy in the determination of analyte content of greater variability and reliability of the proposed sampling plan. The methodology is an adequate and useful tool to develop sampling plans for food composition analysis.Fil: Samman, Norma Cristina. Universidad Nacional de Jujuy. Facultad de Ingeniería; ArgentinaFil: Gimenez, M. A.. Universidad Nacional de Jujuy. Facultad de Ingeniería; ArgentinaFil: Bassett, Maria Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; ArgentinaFil: Lobo, Manuel Oscar. Universidad Nacional de Jujuy. Facultad de Ingeniería; ArgentinaFil: Marcoleri, Maria Elena. Universidad Nacional de Jujuy; ArgentinaElsevier2016-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/48163Samman, Norma Cristina; Gimenez, M. A.; Bassett, Maria Natalia; Lobo, Manuel Oscar; Marcoleri, Maria Elena; Validation of a sampling plan to generate food composition data; Elsevier; Food Chemistry; 193; 2-2016; 141-1470308-8146CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.foodchem.2015.03.083info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0308814615004550?via%3Dihubinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:32:25Zoai:ri.conicet.gov.ar:11336/48163instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:32:26.248CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Validation of a sampling plan to generate food composition data |
title |
Validation of a sampling plan to generate food composition data |
spellingShingle |
Validation of a sampling plan to generate food composition data Samman, Norma Cristina Sampling Plan Methodology Validation Food Composition Variability |
title_short |
Validation of a sampling plan to generate food composition data |
title_full |
Validation of a sampling plan to generate food composition data |
title_fullStr |
Validation of a sampling plan to generate food composition data |
title_full_unstemmed |
Validation of a sampling plan to generate food composition data |
title_sort |
Validation of a sampling plan to generate food composition data |
dc.creator.none.fl_str_mv |
Samman, Norma Cristina Gimenez, M. A. Bassett, Maria Natalia Lobo, Manuel Oscar Marcoleri, Maria Elena |
author |
Samman, Norma Cristina |
author_facet |
Samman, Norma Cristina Gimenez, M. A. Bassett, Maria Natalia Lobo, Manuel Oscar Marcoleri, Maria Elena |
author_role |
author |
author2 |
Gimenez, M. A. Bassett, Maria Natalia Lobo, Manuel Oscar Marcoleri, Maria Elena |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Sampling Plan Methodology Validation Food Composition Variability |
topic |
Sampling Plan Methodology Validation Food Composition Variability |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.11 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
A methodology to develop systematic plans for food sampling was proposed. Long life whole and skimmed milk, and sunflower oil were selected to validate the methodology in Argentina. Fatty acid profile in all foods, proximal composition, and calcium’s content in milk were determined with AOAC methods. The number of samples (n) was calculated applying Cochran’s formula with variation coefficients ⩽12% and an estimate error (r) maximum permissible ⩽5% for calcium content in milks and unsaturated fatty acids in oil. n were 9, 11 and 21 for long life whole and skimmed milk, and sunflower oil respectively. Sample units were randomly collected from production sites and sent to labs. Calculated r with experimental data was ⩽10%, indicating high accuracy in the determination of analyte content of greater variability and reliability of the proposed sampling plan. The methodology is an adequate and useful tool to develop sampling plans for food composition analysis. Fil: Samman, Norma Cristina. Universidad Nacional de Jujuy. Facultad de Ingeniería; Argentina Fil: Gimenez, M. A.. Universidad Nacional de Jujuy. Facultad de Ingeniería; Argentina Fil: Bassett, Maria Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; Argentina Fil: Lobo, Manuel Oscar. Universidad Nacional de Jujuy. Facultad de Ingeniería; Argentina Fil: Marcoleri, Maria Elena. Universidad Nacional de Jujuy; Argentina |
description |
A methodology to develop systematic plans for food sampling was proposed. Long life whole and skimmed milk, and sunflower oil were selected to validate the methodology in Argentina. Fatty acid profile in all foods, proximal composition, and calcium’s content in milk were determined with AOAC methods. The number of samples (n) was calculated applying Cochran’s formula with variation coefficients ⩽12% and an estimate error (r) maximum permissible ⩽5% for calcium content in milks and unsaturated fatty acids in oil. n were 9, 11 and 21 for long life whole and skimmed milk, and sunflower oil respectively. Sample units were randomly collected from production sites and sent to labs. Calculated r with experimental data was ⩽10%, indicating high accuracy in the determination of analyte content of greater variability and reliability of the proposed sampling plan. The methodology is an adequate and useful tool to develop sampling plans for food composition analysis. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/48163 Samman, Norma Cristina; Gimenez, M. A.; Bassett, Maria Natalia; Lobo, Manuel Oscar; Marcoleri, Maria Elena; Validation of a sampling plan to generate food composition data; Elsevier; Food Chemistry; 193; 2-2016; 141-147 0308-8146 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/48163 |
identifier_str_mv |
Samman, Norma Cristina; Gimenez, M. A.; Bassett, Maria Natalia; Lobo, Manuel Oscar; Marcoleri, Maria Elena; Validation of a sampling plan to generate food composition data; Elsevier; Food Chemistry; 193; 2-2016; 141-147 0308-8146 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.foodchem.2015.03.083 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0308814615004550?via%3Dihub |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844612989179658240 |
score |
13.069144 |