Improving craft beer style classification through physicochemical determination and the application of deep learning techniques
- Autores
- Gómez Pamies, Laura Cecilia; Bianchi, María Agostina; Farco, Andrea Paola; Vazquez, Raimundo Damian; Benitez, Elisa Ines
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The consumption of craft beer at fairs and festivals is a phenomenon that keeps growing in the world. For this reason, it is important to control the quality characteristics of the different styles. This study aimed to analyze the different styles of beer, classify them according to their physicochemical parameters, and propose a predictive pattern-based model known as deep learning that best defines the styles that are presented at festivals. Physicochemical analyses of final gravity, color, alcohol, bitterness, and α-acids were carried out on eight styles of beer. The first four parameters are those that characterize the styles according to the Beer Judge Certification Program style guide. The incorporation of the α-acid determination allowed a more realistic classification that considers the brewers’ new tendencies. This study will lay the foundations to improve local recipes, implement standardization, and provide training to local brewers.
Fil: Gómez Pamies, Laura Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Resistencia. Departamento de Ingeniería Química. Laboratorio de Química Teórica y Experimental; Argentina
Fil: Bianchi, María Agostina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina
Fil: Farco, Andrea Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina
Fil: Vazquez, Raimundo Damian. Universidad Tecnológica Nacional. Facultad Reg. Resistencia; Argentina
Fil: Benitez, Elisa Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina - Materia
-
PHYSICOCHEMICAL ATTRIBUTES
BEER
PREDICTIVE ANALYSIS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/239655
Ver los metadatos del registro completo
| id |
CONICETDig_e4ae98b8cecceffa9893357cc95a9443 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/239655 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Improving craft beer style classification through physicochemical determination and the application of deep learning techniquesGómez Pamies, Laura CeciliaBianchi, María AgostinaFarco, Andrea PaolaVazquez, Raimundo DamianBenitez, Elisa InesPHYSICOCHEMICAL ATTRIBUTESBEERPREDICTIVE ANALYSIShttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2The consumption of craft beer at fairs and festivals is a phenomenon that keeps growing in the world. For this reason, it is important to control the quality characteristics of the different styles. This study aimed to analyze the different styles of beer, classify them according to their physicochemical parameters, and propose a predictive pattern-based model known as deep learning that best defines the styles that are presented at festivals. Physicochemical analyses of final gravity, color, alcohol, bitterness, and α-acids were carried out on eight styles of beer. The first four parameters are those that characterize the styles according to the Beer Judge Certification Program style guide. The incorporation of the α-acid determination allowed a more realistic classification that considers the brewers’ new tendencies. This study will lay the foundations to improve local recipes, implement standardization, and provide training to local brewers.Fil: Gómez Pamies, Laura Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Resistencia. Departamento de Ingeniería Química. Laboratorio de Química Teórica y Experimental; ArgentinaFil: Bianchi, María Agostina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; ArgentinaFil: Farco, Andrea Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; ArgentinaFil: Vazquez, Raimundo Damian. Universidad Tecnológica Nacional. Facultad Reg. Resistencia; ArgentinaFil: Benitez, Elisa Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; ArgentinaSociedade Brasileira de Ciência e Tecnologia de Alimentos2024-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/239655Gómez Pamies, Laura Cecilia; Bianchi, María Agostina; Farco, Andrea Paola; Vazquez, Raimundo Damian; Benitez, Elisa Ines; Improving craft beer style classification through physicochemical determination and the application of deep learning techniques; Sociedade Brasileira de Ciência e Tecnologia de Alimentos; Ciência e Tecnologia de Alimentos; 44; 4-2024; 1-70101-20611678-457XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://fstjournal.com.br/revista/article/view/71info:eu-repo/semantics/altIdentifier/doi/10.5327/fst.00071info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:56:34Zoai:ri.conicet.gov.ar:11336/239655instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:56:34.883CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Improving craft beer style classification through physicochemical determination and the application of deep learning techniques |
| title |
Improving craft beer style classification through physicochemical determination and the application of deep learning techniques |
| spellingShingle |
Improving craft beer style classification through physicochemical determination and the application of deep learning techniques Gómez Pamies, Laura Cecilia PHYSICOCHEMICAL ATTRIBUTES BEER PREDICTIVE ANALYSIS |
| title_short |
Improving craft beer style classification through physicochemical determination and the application of deep learning techniques |
| title_full |
Improving craft beer style classification through physicochemical determination and the application of deep learning techniques |
| title_fullStr |
Improving craft beer style classification through physicochemical determination and the application of deep learning techniques |
| title_full_unstemmed |
Improving craft beer style classification through physicochemical determination and the application of deep learning techniques |
| title_sort |
Improving craft beer style classification through physicochemical determination and the application of deep learning techniques |
| dc.creator.none.fl_str_mv |
Gómez Pamies, Laura Cecilia Bianchi, María Agostina Farco, Andrea Paola Vazquez, Raimundo Damian Benitez, Elisa Ines |
| author |
Gómez Pamies, Laura Cecilia |
| author_facet |
Gómez Pamies, Laura Cecilia Bianchi, María Agostina Farco, Andrea Paola Vazquez, Raimundo Damian Benitez, Elisa Ines |
| author_role |
author |
| author2 |
Bianchi, María Agostina Farco, Andrea Paola Vazquez, Raimundo Damian Benitez, Elisa Ines |
| author2_role |
author author author author |
| dc.subject.none.fl_str_mv |
PHYSICOCHEMICAL ATTRIBUTES BEER PREDICTIVE ANALYSIS |
| topic |
PHYSICOCHEMICAL ATTRIBUTES BEER PREDICTIVE ANALYSIS |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.11 https://purl.org/becyt/ford/2 |
| dc.description.none.fl_txt_mv |
The consumption of craft beer at fairs and festivals is a phenomenon that keeps growing in the world. For this reason, it is important to control the quality characteristics of the different styles. This study aimed to analyze the different styles of beer, classify them according to their physicochemical parameters, and propose a predictive pattern-based model known as deep learning that best defines the styles that are presented at festivals. Physicochemical analyses of final gravity, color, alcohol, bitterness, and α-acids were carried out on eight styles of beer. The first four parameters are those that characterize the styles according to the Beer Judge Certification Program style guide. The incorporation of the α-acid determination allowed a more realistic classification that considers the brewers’ new tendencies. This study will lay the foundations to improve local recipes, implement standardization, and provide training to local brewers. Fil: Gómez Pamies, Laura Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Resistencia. Departamento de Ingeniería Química. Laboratorio de Química Teórica y Experimental; Argentina Fil: Bianchi, María Agostina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina Fil: Farco, Andrea Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina Fil: Vazquez, Raimundo Damian. Universidad Tecnológica Nacional. Facultad Reg. Resistencia; Argentina Fil: Benitez, Elisa Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina |
| description |
The consumption of craft beer at fairs and festivals is a phenomenon that keeps growing in the world. For this reason, it is important to control the quality characteristics of the different styles. This study aimed to analyze the different styles of beer, classify them according to their physicochemical parameters, and propose a predictive pattern-based model known as deep learning that best defines the styles that are presented at festivals. Physicochemical analyses of final gravity, color, alcohol, bitterness, and α-acids were carried out on eight styles of beer. The first four parameters are those that characterize the styles according to the Beer Judge Certification Program style guide. The incorporation of the α-acid determination allowed a more realistic classification that considers the brewers’ new tendencies. This study will lay the foundations to improve local recipes, implement standardization, and provide training to local brewers. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-04 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/239655 Gómez Pamies, Laura Cecilia; Bianchi, María Agostina; Farco, Andrea Paola; Vazquez, Raimundo Damian; Benitez, Elisa Ines; Improving craft beer style classification through physicochemical determination and the application of deep learning techniques; Sociedade Brasileira de Ciência e Tecnologia de Alimentos; Ciência e Tecnologia de Alimentos; 44; 4-2024; 1-7 0101-2061 1678-457X CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/239655 |
| identifier_str_mv |
Gómez Pamies, Laura Cecilia; Bianchi, María Agostina; Farco, Andrea Paola; Vazquez, Raimundo Damian; Benitez, Elisa Ines; Improving craft beer style classification through physicochemical determination and the application of deep learning techniques; Sociedade Brasileira de Ciência e Tecnologia de Alimentos; Ciência e Tecnologia de Alimentos; 44; 4-2024; 1-7 0101-2061 1678-457X CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://fstjournal.com.br/revista/article/view/71 info:eu-repo/semantics/altIdentifier/doi/10.5327/fst.00071 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Ciência e Tecnologia de Alimentos |
| publisher.none.fl_str_mv |
Sociedade Brasileira de Ciência e Tecnologia de Alimentos |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846782273122205696 |
| score |
12.982451 |