Data mining applied to forensic speaker identification
- Autores
- Univaso, Pedro Nicolas; Ale, Juan Maria; Gurlekian, Jorge Alberto
- Año de publicación
- 2015
- Idioma
- español castellano
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we analyze the advantages of using data mining techniques and tools for data fusion in forensic speaker recognition. Segmental and suprasegmental features were employed in 28 different classifiers, in order to compare their performances. The selected classifiers have different learning techniques: lazy or instance-based, eager and ensemble. Two approaches were employed on the classification task: the use of all features and the use of a feature subset, selected with a gain ratio methodology. The best performances, with all features, were obtained by three classifiers: Logistic Model Tree (eager), LogitBoost (ensemble) and Multilayer Perceptron (eager). Support Vector Machine (eager) proved to be a good classifier if a Pearson VII function-based universal kernel was used. When low dimensional features were selected, ensemble classifiers exceeded the performance of all others classifiers. Segmental and tone features demonstrated the best speaker discrimination capabilities, followed by duration and quality voice features. Evaluation was performed on Argentine-Spanish voice samples from the Speech_Dat database recorded on a fixed telephone environment. Different recording sessions and channels for the test segments were added and the Z-norm procedure was applied for channel compensation.
Fil: Univaso, Pedro Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; Argentina
Fil: Ale, Juan Maria. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina
Fil: Gurlekian, Jorge Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; Argentina - Materia
-
CLASSIFIERS
DATA FUSION
DATA MINING
ENSEMBLE METHODS
SPEAKER RECOGNITION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/113286
Ver los metadatos del registro completo
id |
CONICETDig_e45ba6eb7c4a7188eaf2ff4b251450a0 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/113286 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Data mining applied to forensic speaker identificationUnivaso, Pedro NicolasAle, Juan MariaGurlekian, Jorge AlbertoCLASSIFIERSDATA FUSIONDATA MININGENSEMBLE METHODSSPEAKER RECOGNITIONhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1In this paper we analyze the advantages of using data mining techniques and tools for data fusion in forensic speaker recognition. Segmental and suprasegmental features were employed in 28 different classifiers, in order to compare their performances. The selected classifiers have different learning techniques: lazy or instance-based, eager and ensemble. Two approaches were employed on the classification task: the use of all features and the use of a feature subset, selected with a gain ratio methodology. The best performances, with all features, were obtained by three classifiers: Logistic Model Tree (eager), LogitBoost (ensemble) and Multilayer Perceptron (eager). Support Vector Machine (eager) proved to be a good classifier if a Pearson VII function-based universal kernel was used. When low dimensional features were selected, ensemble classifiers exceeded the performance of all others classifiers. Segmental and tone features demonstrated the best speaker discrimination capabilities, followed by duration and quality voice features. Evaluation was performed on Argentine-Spanish voice samples from the Speech_Dat database recorded on a fixed telephone environment. Different recording sessions and channels for the test segments were added and the Z-norm procedure was applied for channel compensation.Fil: Univaso, Pedro Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; ArgentinaFil: Ale, Juan Maria. Universidad de Buenos Aires. Facultad de Ingeniería; ArgentinaFil: Gurlekian, Jorge Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; ArgentinaInstitute of Electrical and Electronics Engineers2015-04-13info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/113286Univaso, Pedro Nicolas; Ale, Juan Maria; Gurlekian, Jorge Alberto; Data mining applied to forensic speaker identification; Institute of Electrical and Electronics Engineers; IEEE Latin America Transactions; 13; 4; 13-4-2015; 1098-11111548-0992CONICET DigitalCONICETspainfo:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/7106363info:eu-repo/semantics/altIdentifier/doi/10.1109/TLA.2015.7106363info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:46:48Zoai:ri.conicet.gov.ar:11336/113286instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:46:48.969CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Data mining applied to forensic speaker identification |
title |
Data mining applied to forensic speaker identification |
spellingShingle |
Data mining applied to forensic speaker identification Univaso, Pedro Nicolas CLASSIFIERS DATA FUSION DATA MINING ENSEMBLE METHODS SPEAKER RECOGNITION |
title_short |
Data mining applied to forensic speaker identification |
title_full |
Data mining applied to forensic speaker identification |
title_fullStr |
Data mining applied to forensic speaker identification |
title_full_unstemmed |
Data mining applied to forensic speaker identification |
title_sort |
Data mining applied to forensic speaker identification |
dc.creator.none.fl_str_mv |
Univaso, Pedro Nicolas Ale, Juan Maria Gurlekian, Jorge Alberto |
author |
Univaso, Pedro Nicolas |
author_facet |
Univaso, Pedro Nicolas Ale, Juan Maria Gurlekian, Jorge Alberto |
author_role |
author |
author2 |
Ale, Juan Maria Gurlekian, Jorge Alberto |
author2_role |
author author |
dc.subject.none.fl_str_mv |
CLASSIFIERS DATA FUSION DATA MINING ENSEMBLE METHODS SPEAKER RECOGNITION |
topic |
CLASSIFIERS DATA FUSION DATA MINING ENSEMBLE METHODS SPEAKER RECOGNITION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper we analyze the advantages of using data mining techniques and tools for data fusion in forensic speaker recognition. Segmental and suprasegmental features were employed in 28 different classifiers, in order to compare their performances. The selected classifiers have different learning techniques: lazy or instance-based, eager and ensemble. Two approaches were employed on the classification task: the use of all features and the use of a feature subset, selected with a gain ratio methodology. The best performances, with all features, were obtained by three classifiers: Logistic Model Tree (eager), LogitBoost (ensemble) and Multilayer Perceptron (eager). Support Vector Machine (eager) proved to be a good classifier if a Pearson VII function-based universal kernel was used. When low dimensional features were selected, ensemble classifiers exceeded the performance of all others classifiers. Segmental and tone features demonstrated the best speaker discrimination capabilities, followed by duration and quality voice features. Evaluation was performed on Argentine-Spanish voice samples from the Speech_Dat database recorded on a fixed telephone environment. Different recording sessions and channels for the test segments were added and the Z-norm procedure was applied for channel compensation. Fil: Univaso, Pedro Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; Argentina Fil: Ale, Juan Maria. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina Fil: Gurlekian, Jorge Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; Argentina |
description |
In this paper we analyze the advantages of using data mining techniques and tools for data fusion in forensic speaker recognition. Segmental and suprasegmental features were employed in 28 different classifiers, in order to compare their performances. The selected classifiers have different learning techniques: lazy or instance-based, eager and ensemble. Two approaches were employed on the classification task: the use of all features and the use of a feature subset, selected with a gain ratio methodology. The best performances, with all features, were obtained by three classifiers: Logistic Model Tree (eager), LogitBoost (ensemble) and Multilayer Perceptron (eager). Support Vector Machine (eager) proved to be a good classifier if a Pearson VII function-based universal kernel was used. When low dimensional features were selected, ensemble classifiers exceeded the performance of all others classifiers. Segmental and tone features demonstrated the best speaker discrimination capabilities, followed by duration and quality voice features. Evaluation was performed on Argentine-Spanish voice samples from the Speech_Dat database recorded on a fixed telephone environment. Different recording sessions and channels for the test segments were added and the Z-norm procedure was applied for channel compensation. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-04-13 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/113286 Univaso, Pedro Nicolas; Ale, Juan Maria; Gurlekian, Jorge Alberto; Data mining applied to forensic speaker identification; Institute of Electrical and Electronics Engineers; IEEE Latin America Transactions; 13; 4; 13-4-2015; 1098-1111 1548-0992 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/113286 |
identifier_str_mv |
Univaso, Pedro Nicolas; Ale, Juan Maria; Gurlekian, Jorge Alberto; Data mining applied to forensic speaker identification; Institute of Electrical and Electronics Engineers; IEEE Latin America Transactions; 13; 4; 13-4-2015; 1098-1111 1548-0992 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/7106363 info:eu-repo/semantics/altIdentifier/doi/10.1109/TLA.2015.7106363 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613460979089408 |
score |
13.070432 |