Toward Fail-Safe Speaker Recognition: Trial-Based Calibration with a Reject Option
- Autores
- Ferrer, Luciana; Nandwana, Mahesh Kumar; McLaren, Mitchell; Castan, Diego; Lawson, Aaron
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The output scores of most of the speaker recognition systems are not directly interpretable as stand-alone values. For this reason, a calibration step is usually performed on the scores to convert them into proper likelihood ratios, which have a clear probabilistic interpretation. The standard calibration approach transforms the system scores using a linear function trained using data selected to closely match the evaluation conditions. This selection, though, is not feasible when the evaluation conditions are unknown. In previous work, we proposed a calibration approach for this scenario called trial-based calibration (TBC). TBC trains a separate calibration model for each test trial using data that is dynamically selected from a candidate training set to match the conditions of the trial. In this work, we extend the TBC method, proposing: 1) a new similarity metric for selecting training data that result in significant gains over the one proposed in the original work; 2) a new option that enables the system to reject a trial when not enough matched data are available for training the calibration model; and 3) the use of regularization to improve the robustness of the calibration models trained for each trial. We test the proposed algorithms on a development set composed of several conditions and on the Federal Bureau of Investigation multi-condition speaker recognition dataset, and we demonstrate that the proposed approach reduces calibration loss to values close to 0 for most of the conditions when matched calibration data are available for selection, and that it can reject most of the trials for which relevant calibration data are unavailable.
Fil: Ferrer, Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Nandwana, Mahesh Kumar. No especifíca;
Fil: McLaren, Mitchell. No especifíca;
Fil: Castan, Diego. No especifíca;
Fil: Lawson, Aaron. No especifíca; - Materia
-
FORENSIC VOICE COMPARISON
SPEAKER RECOGNITION
TRIAL-BASED CALIBRATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/123318
Ver los metadatos del registro completo
id |
CONICETDig_70a22c3fffd6efdd214a14209300f2b8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/123318 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Toward Fail-Safe Speaker Recognition: Trial-Based Calibration with a Reject OptionFerrer, LucianaNandwana, Mahesh KumarMcLaren, MitchellCastan, DiegoLawson, AaronFORENSIC VOICE COMPARISONSPEAKER RECOGNITIONTRIAL-BASED CALIBRATIONhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1The output scores of most of the speaker recognition systems are not directly interpretable as stand-alone values. For this reason, a calibration step is usually performed on the scores to convert them into proper likelihood ratios, which have a clear probabilistic interpretation. The standard calibration approach transforms the system scores using a linear function trained using data selected to closely match the evaluation conditions. This selection, though, is not feasible when the evaluation conditions are unknown. In previous work, we proposed a calibration approach for this scenario called trial-based calibration (TBC). TBC trains a separate calibration model for each test trial using data that is dynamically selected from a candidate training set to match the conditions of the trial. In this work, we extend the TBC method, proposing: 1) a new similarity metric for selecting training data that result in significant gains over the one proposed in the original work; 2) a new option that enables the system to reject a trial when not enough matched data are available for training the calibration model; and 3) the use of regularization to improve the robustness of the calibration models trained for each trial. We test the proposed algorithms on a development set composed of several conditions and on the Federal Bureau of Investigation multi-condition speaker recognition dataset, and we demonstrate that the proposed approach reduces calibration loss to values close to 0 for most of the conditions when matched calibration data are available for selection, and that it can reject most of the trials for which relevant calibration data are unavailable.Fil: Ferrer, Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Nandwana, Mahesh Kumar. No especifíca;Fil: McLaren, Mitchell. No especifíca;Fil: Castan, Diego. No especifíca;Fil: Lawson, Aaron. No especifíca;Institute of Electrical and Electronics Engineers2019-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/123318Ferrer, Luciana; Nandwana, Mahesh Kumar; McLaren, Mitchell; Castan, Diego; Lawson, Aaron; Toward Fail-Safe Speaker Recognition: Trial-Based Calibration with a Reject Option; Institute of Electrical and Electronics Engineers; IEEE/ACM Transactions on Audio Speech and Language Processing; 27; 1; 1-2019; 140-1532329-9290CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/8490592info:eu-repo/semantics/altIdentifier/doi/10.1109/TASLP.2018.2875794info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:36:56Zoai:ri.conicet.gov.ar:11336/123318instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:36:56.339CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Toward Fail-Safe Speaker Recognition: Trial-Based Calibration with a Reject Option |
title |
Toward Fail-Safe Speaker Recognition: Trial-Based Calibration with a Reject Option |
spellingShingle |
Toward Fail-Safe Speaker Recognition: Trial-Based Calibration with a Reject Option Ferrer, Luciana FORENSIC VOICE COMPARISON SPEAKER RECOGNITION TRIAL-BASED CALIBRATION |
title_short |
Toward Fail-Safe Speaker Recognition: Trial-Based Calibration with a Reject Option |
title_full |
Toward Fail-Safe Speaker Recognition: Trial-Based Calibration with a Reject Option |
title_fullStr |
Toward Fail-Safe Speaker Recognition: Trial-Based Calibration with a Reject Option |
title_full_unstemmed |
Toward Fail-Safe Speaker Recognition: Trial-Based Calibration with a Reject Option |
title_sort |
Toward Fail-Safe Speaker Recognition: Trial-Based Calibration with a Reject Option |
dc.creator.none.fl_str_mv |
Ferrer, Luciana Nandwana, Mahesh Kumar McLaren, Mitchell Castan, Diego Lawson, Aaron |
author |
Ferrer, Luciana |
author_facet |
Ferrer, Luciana Nandwana, Mahesh Kumar McLaren, Mitchell Castan, Diego Lawson, Aaron |
author_role |
author |
author2 |
Nandwana, Mahesh Kumar McLaren, Mitchell Castan, Diego Lawson, Aaron |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
FORENSIC VOICE COMPARISON SPEAKER RECOGNITION TRIAL-BASED CALIBRATION |
topic |
FORENSIC VOICE COMPARISON SPEAKER RECOGNITION TRIAL-BASED CALIBRATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The output scores of most of the speaker recognition systems are not directly interpretable as stand-alone values. For this reason, a calibration step is usually performed on the scores to convert them into proper likelihood ratios, which have a clear probabilistic interpretation. The standard calibration approach transforms the system scores using a linear function trained using data selected to closely match the evaluation conditions. This selection, though, is not feasible when the evaluation conditions are unknown. In previous work, we proposed a calibration approach for this scenario called trial-based calibration (TBC). TBC trains a separate calibration model for each test trial using data that is dynamically selected from a candidate training set to match the conditions of the trial. In this work, we extend the TBC method, proposing: 1) a new similarity metric for selecting training data that result in significant gains over the one proposed in the original work; 2) a new option that enables the system to reject a trial when not enough matched data are available for training the calibration model; and 3) the use of regularization to improve the robustness of the calibration models trained for each trial. We test the proposed algorithms on a development set composed of several conditions and on the Federal Bureau of Investigation multi-condition speaker recognition dataset, and we demonstrate that the proposed approach reduces calibration loss to values close to 0 for most of the conditions when matched calibration data are available for selection, and that it can reject most of the trials for which relevant calibration data are unavailable. Fil: Ferrer, Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina Fil: Nandwana, Mahesh Kumar. No especifíca; Fil: McLaren, Mitchell. No especifíca; Fil: Castan, Diego. No especifíca; Fil: Lawson, Aaron. No especifíca; |
description |
The output scores of most of the speaker recognition systems are not directly interpretable as stand-alone values. For this reason, a calibration step is usually performed on the scores to convert them into proper likelihood ratios, which have a clear probabilistic interpretation. The standard calibration approach transforms the system scores using a linear function trained using data selected to closely match the evaluation conditions. This selection, though, is not feasible when the evaluation conditions are unknown. In previous work, we proposed a calibration approach for this scenario called trial-based calibration (TBC). TBC trains a separate calibration model for each test trial using data that is dynamically selected from a candidate training set to match the conditions of the trial. In this work, we extend the TBC method, proposing: 1) a new similarity metric for selecting training data that result in significant gains over the one proposed in the original work; 2) a new option that enables the system to reject a trial when not enough matched data are available for training the calibration model; and 3) the use of regularization to improve the robustness of the calibration models trained for each trial. We test the proposed algorithms on a development set composed of several conditions and on the Federal Bureau of Investigation multi-condition speaker recognition dataset, and we demonstrate that the proposed approach reduces calibration loss to values close to 0 for most of the conditions when matched calibration data are available for selection, and that it can reject most of the trials for which relevant calibration data are unavailable. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/123318 Ferrer, Luciana; Nandwana, Mahesh Kumar; McLaren, Mitchell; Castan, Diego; Lawson, Aaron; Toward Fail-Safe Speaker Recognition: Trial-Based Calibration with a Reject Option; Institute of Electrical and Electronics Engineers; IEEE/ACM Transactions on Audio Speech and Language Processing; 27; 1; 1-2019; 140-153 2329-9290 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/123318 |
identifier_str_mv |
Ferrer, Luciana; Nandwana, Mahesh Kumar; McLaren, Mitchell; Castan, Diego; Lawson, Aaron; Toward Fail-Safe Speaker Recognition: Trial-Based Calibration with a Reject Option; Institute of Electrical and Electronics Engineers; IEEE/ACM Transactions on Audio Speech and Language Processing; 27; 1; 1-2019; 140-153 2329-9290 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/8490592 info:eu-repo/semantics/altIdentifier/doi/10.1109/TASLP.2018.2875794 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614389833924608 |
score |
13.070432 |