Some advances on Lovász-Schrijver semidefinite programming relaxations of the fractional stable set polytope
- Autores
- Bianchi, Silvia Maria; Escalante, Mariana Silvina; Nasini, Graciela Leonor; Tunçel, Levent
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study Lovász and Schrijver's hierarchy of relaxations based on positive semidefiniteness constraints derived from the fractional stable set polytope. We show that there are graphs G for which a single application of the underlying operator, N+, to the fractional stable set polytope gives a nonpolyhedral convex relaxation of the stable set polytope. We also show that none of the current best combinatorial characterizations of these relaxations obtained by a single application of the N+ operator is exact.
Fil: Bianchi, Silvia Maria. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina
Fil: Escalante, Mariana Silvina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina
Fil: Nasini, Graciela Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina
Fil: Tunçel, Levent. University of Waterloo; Canadá - Materia
-
LIFT-AND-PROJECT
SEMIDEFINITE PROGRAMMING
STABLE SET PROBLEM - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/94350
Ver los metadatos del registro completo
| id |
CONICETDig_e3f48d10de6e51aa300b62dd843d237c |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/94350 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Some advances on Lovász-Schrijver semidefinite programming relaxations of the fractional stable set polytopeBianchi, Silvia MariaEscalante, Mariana SilvinaNasini, Graciela LeonorTunçel, LeventLIFT-AND-PROJECTSEMIDEFINITE PROGRAMMINGSTABLE SET PROBLEMhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study Lovász and Schrijver's hierarchy of relaxations based on positive semidefiniteness constraints derived from the fractional stable set polytope. We show that there are graphs G for which a single application of the underlying operator, N+, to the fractional stable set polytope gives a nonpolyhedral convex relaxation of the stable set polytope. We also show that none of the current best combinatorial characterizations of these relaxations obtained by a single application of the N+ operator is exact.Fil: Bianchi, Silvia Maria. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; ArgentinaFil: Escalante, Mariana Silvina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; ArgentinaFil: Nasini, Graciela Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; ArgentinaFil: Tunçel, Levent. University of Waterloo; CanadáElsevier Science2014-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/94350Bianchi, Silvia Maria; Escalante, Mariana Silvina; Nasini, Graciela Leonor; Tunçel, Levent; Some advances on Lovász-Schrijver semidefinite programming relaxations of the fractional stable set polytope; Elsevier Science; Discrete Applied Mathematics; 164; Part 2; 2-2014; 460-4690166-218XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.dam.2013.03.028info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0166218X13001765info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:19:26Zoai:ri.conicet.gov.ar:11336/94350instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:19:26.857CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Some advances on Lovász-Schrijver semidefinite programming relaxations of the fractional stable set polytope |
| title |
Some advances on Lovász-Schrijver semidefinite programming relaxations of the fractional stable set polytope |
| spellingShingle |
Some advances on Lovász-Schrijver semidefinite programming relaxations of the fractional stable set polytope Bianchi, Silvia Maria LIFT-AND-PROJECT SEMIDEFINITE PROGRAMMING STABLE SET PROBLEM |
| title_short |
Some advances on Lovász-Schrijver semidefinite programming relaxations of the fractional stable set polytope |
| title_full |
Some advances on Lovász-Schrijver semidefinite programming relaxations of the fractional stable set polytope |
| title_fullStr |
Some advances on Lovász-Schrijver semidefinite programming relaxations of the fractional stable set polytope |
| title_full_unstemmed |
Some advances on Lovász-Schrijver semidefinite programming relaxations of the fractional stable set polytope |
| title_sort |
Some advances on Lovász-Schrijver semidefinite programming relaxations of the fractional stable set polytope |
| dc.creator.none.fl_str_mv |
Bianchi, Silvia Maria Escalante, Mariana Silvina Nasini, Graciela Leonor Tunçel, Levent |
| author |
Bianchi, Silvia Maria |
| author_facet |
Bianchi, Silvia Maria Escalante, Mariana Silvina Nasini, Graciela Leonor Tunçel, Levent |
| author_role |
author |
| author2 |
Escalante, Mariana Silvina Nasini, Graciela Leonor Tunçel, Levent |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
LIFT-AND-PROJECT SEMIDEFINITE PROGRAMMING STABLE SET PROBLEM |
| topic |
LIFT-AND-PROJECT SEMIDEFINITE PROGRAMMING STABLE SET PROBLEM |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We study Lovász and Schrijver's hierarchy of relaxations based on positive semidefiniteness constraints derived from the fractional stable set polytope. We show that there are graphs G for which a single application of the underlying operator, N+, to the fractional stable set polytope gives a nonpolyhedral convex relaxation of the stable set polytope. We also show that none of the current best combinatorial characterizations of these relaxations obtained by a single application of the N+ operator is exact. Fil: Bianchi, Silvia Maria. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina Fil: Escalante, Mariana Silvina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina Fil: Nasini, Graciela Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina Fil: Tunçel, Levent. University of Waterloo; Canadá |
| description |
We study Lovász and Schrijver's hierarchy of relaxations based on positive semidefiniteness constraints derived from the fractional stable set polytope. We show that there are graphs G for which a single application of the underlying operator, N+, to the fractional stable set polytope gives a nonpolyhedral convex relaxation of the stable set polytope. We also show that none of the current best combinatorial characterizations of these relaxations obtained by a single application of the N+ operator is exact. |
| publishDate |
2014 |
| dc.date.none.fl_str_mv |
2014-02 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/94350 Bianchi, Silvia Maria; Escalante, Mariana Silvina; Nasini, Graciela Leonor; Tunçel, Levent; Some advances on Lovász-Schrijver semidefinite programming relaxations of the fractional stable set polytope; Elsevier Science; Discrete Applied Mathematics; 164; Part 2; 2-2014; 460-469 0166-218X CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/94350 |
| identifier_str_mv |
Bianchi, Silvia Maria; Escalante, Mariana Silvina; Nasini, Graciela Leonor; Tunçel, Levent; Some advances on Lovász-Schrijver semidefinite programming relaxations of the fractional stable set polytope; Elsevier Science; Discrete Applied Mathematics; 164; Part 2; 2-2014; 460-469 0166-218X CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.dam.2013.03.028 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0166218X13001765 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier Science |
| publisher.none.fl_str_mv |
Elsevier Science |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781671520600064 |
| score |
12.982451 |