Lovász–Schrijver SDP-operator, near-perfect graphs and near-bipartite graphs
- Autores
- Bianchi, Maria Silvia; Escalante, Mariana Silvina; Nasini, Graciela Leonor; Tuncel, Levent
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the Lovász–Schrijver lift-and-project operator (LS +) based on the cone of symmetric, positive semidefinite matrices, applied to the fractional stable set polytope of graphs. The problem of obtaining a combinatorial characterization of graphs for which the LS +-operator generates the stable set polytope in one step has been open since 1990. We call these graphs LS +-perfect. In the current contribution, we pursue a full combinatorial characterization of LS +-perfect graphs and make progress towards such a characterization by establishing a new, close relationship among LS +-perfect graphs, near-bipartite graphs and a newly introduced concept of full-support-perfect graphs.
Fil: Bianchi, Maria Silvia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Escalante, Mariana Silvina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Nasini, Graciela Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Tuncel, Levent. University of Waterloo; Canadá - Materia
-
INTEGER PROGRAMMING
LIFT-AND-PROJECT METHODS
SEMIDEFINITE PROGRAMMING
STABLE SET PROBLEM - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/53393
Ver los metadatos del registro completo
| id |
CONICETDig_ec0ae3a179d518b158c598fddd1699a9 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/53393 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Lovász–Schrijver SDP-operator, near-perfect graphs and near-bipartite graphsBianchi, Maria SilviaEscalante, Mariana SilvinaNasini, Graciela LeonorTuncel, LeventINTEGER PROGRAMMINGLIFT-AND-PROJECT METHODSSEMIDEFINITE PROGRAMMINGSTABLE SET PROBLEMhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study the Lovász–Schrijver lift-and-project operator (LS +) based on the cone of symmetric, positive semidefinite matrices, applied to the fractional stable set polytope of graphs. The problem of obtaining a combinatorial characterization of graphs for which the LS +-operator generates the stable set polytope in one step has been open since 1990. We call these graphs LS +-perfect. In the current contribution, we pursue a full combinatorial characterization of LS +-perfect graphs and make progress towards such a characterization by establishing a new, close relationship among LS +-perfect graphs, near-bipartite graphs and a newly introduced concept of full-support-perfect graphs.Fil: Bianchi, Maria Silvia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Escalante, Mariana Silvina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Nasini, Graciela Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Tuncel, Levent. University of Waterloo; CanadáSpringer2017-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/53393Bianchi, Maria Silvia; Escalante, Mariana Silvina; Nasini, Graciela Leonor; Tuncel, Levent; Lovász–Schrijver SDP-operator, near-perfect graphs and near-bipartite graphs; Springer; Mathematical Programming; 162; 1-2; 3-2017; 201-2230025-5610CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10107-016-1035-1info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10107-016-1035-1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:08:32Zoai:ri.conicet.gov.ar:11336/53393instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:08:32.644CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Lovász–Schrijver SDP-operator, near-perfect graphs and near-bipartite graphs |
| title |
Lovász–Schrijver SDP-operator, near-perfect graphs and near-bipartite graphs |
| spellingShingle |
Lovász–Schrijver SDP-operator, near-perfect graphs and near-bipartite graphs Bianchi, Maria Silvia INTEGER PROGRAMMING LIFT-AND-PROJECT METHODS SEMIDEFINITE PROGRAMMING STABLE SET PROBLEM |
| title_short |
Lovász–Schrijver SDP-operator, near-perfect graphs and near-bipartite graphs |
| title_full |
Lovász–Schrijver SDP-operator, near-perfect graphs and near-bipartite graphs |
| title_fullStr |
Lovász–Schrijver SDP-operator, near-perfect graphs and near-bipartite graphs |
| title_full_unstemmed |
Lovász–Schrijver SDP-operator, near-perfect graphs and near-bipartite graphs |
| title_sort |
Lovász–Schrijver SDP-operator, near-perfect graphs and near-bipartite graphs |
| dc.creator.none.fl_str_mv |
Bianchi, Maria Silvia Escalante, Mariana Silvina Nasini, Graciela Leonor Tuncel, Levent |
| author |
Bianchi, Maria Silvia |
| author_facet |
Bianchi, Maria Silvia Escalante, Mariana Silvina Nasini, Graciela Leonor Tuncel, Levent |
| author_role |
author |
| author2 |
Escalante, Mariana Silvina Nasini, Graciela Leonor Tuncel, Levent |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
INTEGER PROGRAMMING LIFT-AND-PROJECT METHODS SEMIDEFINITE PROGRAMMING STABLE SET PROBLEM |
| topic |
INTEGER PROGRAMMING LIFT-AND-PROJECT METHODS SEMIDEFINITE PROGRAMMING STABLE SET PROBLEM |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We study the Lovász–Schrijver lift-and-project operator (LS +) based on the cone of symmetric, positive semidefinite matrices, applied to the fractional stable set polytope of graphs. The problem of obtaining a combinatorial characterization of graphs for which the LS +-operator generates the stable set polytope in one step has been open since 1990. We call these graphs LS +-perfect. In the current contribution, we pursue a full combinatorial characterization of LS +-perfect graphs and make progress towards such a characterization by establishing a new, close relationship among LS +-perfect graphs, near-bipartite graphs and a newly introduced concept of full-support-perfect graphs. Fil: Bianchi, Maria Silvia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina Fil: Escalante, Mariana Silvina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina Fil: Nasini, Graciela Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina Fil: Tuncel, Levent. University of Waterloo; Canadá |
| description |
We study the Lovász–Schrijver lift-and-project operator (LS +) based on the cone of symmetric, positive semidefinite matrices, applied to the fractional stable set polytope of graphs. The problem of obtaining a combinatorial characterization of graphs for which the LS +-operator generates the stable set polytope in one step has been open since 1990. We call these graphs LS +-perfect. In the current contribution, we pursue a full combinatorial characterization of LS +-perfect graphs and make progress towards such a characterization by establishing a new, close relationship among LS +-perfect graphs, near-bipartite graphs and a newly introduced concept of full-support-perfect graphs. |
| publishDate |
2017 |
| dc.date.none.fl_str_mv |
2017-03 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/53393 Bianchi, Maria Silvia; Escalante, Mariana Silvina; Nasini, Graciela Leonor; Tuncel, Levent; Lovász–Schrijver SDP-operator, near-perfect graphs and near-bipartite graphs; Springer; Mathematical Programming; 162; 1-2; 3-2017; 201-223 0025-5610 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/53393 |
| identifier_str_mv |
Bianchi, Maria Silvia; Escalante, Mariana Silvina; Nasini, Graciela Leonor; Tuncel, Levent; Lovász–Schrijver SDP-operator, near-perfect graphs and near-bipartite graphs; Springer; Mathematical Programming; 162; 1-2; 3-2017; 201-223 0025-5610 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s10107-016-1035-1 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10107-016-1035-1 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Springer |
| publisher.none.fl_str_mv |
Springer |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781418148986880 |
| score |
12.982451 |