Lovász–Schrijver SDP-operator, near-perfect graphs and near-bipartite graphs

Autores
Bianchi, Maria Silvia; Escalante, Mariana Silvina; Nasini, Graciela Leonor; Tuncel, Levent
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study the Lovász–Schrijver lift-and-project operator (LS +) based on the cone of symmetric, positive semidefinite matrices, applied to the fractional stable set polytope of graphs. The problem of obtaining a combinatorial characterization of graphs for which the LS +-operator generates the stable set polytope in one step has been open since 1990. We call these graphs LS +-perfect. In the current contribution, we pursue a full combinatorial characterization of LS +-perfect graphs and make progress towards such a characterization by establishing a new, close relationship among LS +-perfect graphs, near-bipartite graphs and a newly introduced concept of full-support-perfect graphs.
Fil: Bianchi, Maria Silvia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Escalante, Mariana Silvina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Nasini, Graciela Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Tuncel, Levent. University of Waterloo; Canadá
Materia
INTEGER PROGRAMMING
LIFT-AND-PROJECT METHODS
SEMIDEFINITE PROGRAMMING
STABLE SET PROBLEM
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/53393

id CONICETDig_ec0ae3a179d518b158c598fddd1699a9
oai_identifier_str oai:ri.conicet.gov.ar:11336/53393
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Lovász–Schrijver SDP-operator, near-perfect graphs and near-bipartite graphsBianchi, Maria SilviaEscalante, Mariana SilvinaNasini, Graciela LeonorTuncel, LeventINTEGER PROGRAMMINGLIFT-AND-PROJECT METHODSSEMIDEFINITE PROGRAMMINGSTABLE SET PROBLEMhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study the Lovász–Schrijver lift-and-project operator (LS +) based on the cone of symmetric, positive semidefinite matrices, applied to the fractional stable set polytope of graphs. The problem of obtaining a combinatorial characterization of graphs for which the LS +-operator generates the stable set polytope in one step has been open since 1990. We call these graphs LS +-perfect. In the current contribution, we pursue a full combinatorial characterization of LS +-perfect graphs and make progress towards such a characterization by establishing a new, close relationship among LS +-perfect graphs, near-bipartite graphs and a newly introduced concept of full-support-perfect graphs.Fil: Bianchi, Maria Silvia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Escalante, Mariana Silvina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Nasini, Graciela Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Tuncel, Levent. University of Waterloo; CanadáSpringer2017-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/53393Bianchi, Maria Silvia; Escalante, Mariana Silvina; Nasini, Graciela Leonor; Tuncel, Levent; Lovász–Schrijver SDP-operator, near-perfect graphs and near-bipartite graphs; Springer; Mathematical Programming; 162; 1-2; 3-2017; 201-2230025-5610CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10107-016-1035-1info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10107-016-1035-1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:08:32Zoai:ri.conicet.gov.ar:11336/53393instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:08:32.644CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Lovász–Schrijver SDP-operator, near-perfect graphs and near-bipartite graphs
title Lovász–Schrijver SDP-operator, near-perfect graphs and near-bipartite graphs
spellingShingle Lovász–Schrijver SDP-operator, near-perfect graphs and near-bipartite graphs
Bianchi, Maria Silvia
INTEGER PROGRAMMING
LIFT-AND-PROJECT METHODS
SEMIDEFINITE PROGRAMMING
STABLE SET PROBLEM
title_short Lovász–Schrijver SDP-operator, near-perfect graphs and near-bipartite graphs
title_full Lovász–Schrijver SDP-operator, near-perfect graphs and near-bipartite graphs
title_fullStr Lovász–Schrijver SDP-operator, near-perfect graphs and near-bipartite graphs
title_full_unstemmed Lovász–Schrijver SDP-operator, near-perfect graphs and near-bipartite graphs
title_sort Lovász–Schrijver SDP-operator, near-perfect graphs and near-bipartite graphs
dc.creator.none.fl_str_mv Bianchi, Maria Silvia
Escalante, Mariana Silvina
Nasini, Graciela Leonor
Tuncel, Levent
author Bianchi, Maria Silvia
author_facet Bianchi, Maria Silvia
Escalante, Mariana Silvina
Nasini, Graciela Leonor
Tuncel, Levent
author_role author
author2 Escalante, Mariana Silvina
Nasini, Graciela Leonor
Tuncel, Levent
author2_role author
author
author
dc.subject.none.fl_str_mv INTEGER PROGRAMMING
LIFT-AND-PROJECT METHODS
SEMIDEFINITE PROGRAMMING
STABLE SET PROBLEM
topic INTEGER PROGRAMMING
LIFT-AND-PROJECT METHODS
SEMIDEFINITE PROGRAMMING
STABLE SET PROBLEM
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study the Lovász–Schrijver lift-and-project operator (LS +) based on the cone of symmetric, positive semidefinite matrices, applied to the fractional stable set polytope of graphs. The problem of obtaining a combinatorial characterization of graphs for which the LS +-operator generates the stable set polytope in one step has been open since 1990. We call these graphs LS +-perfect. In the current contribution, we pursue a full combinatorial characterization of LS +-perfect graphs and make progress towards such a characterization by establishing a new, close relationship among LS +-perfect graphs, near-bipartite graphs and a newly introduced concept of full-support-perfect graphs.
Fil: Bianchi, Maria Silvia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Escalante, Mariana Silvina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Nasini, Graciela Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Tuncel, Levent. University of Waterloo; Canadá
description We study the Lovász–Schrijver lift-and-project operator (LS +) based on the cone of symmetric, positive semidefinite matrices, applied to the fractional stable set polytope of graphs. The problem of obtaining a combinatorial characterization of graphs for which the LS +-operator generates the stable set polytope in one step has been open since 1990. We call these graphs LS +-perfect. In the current contribution, we pursue a full combinatorial characterization of LS +-perfect graphs and make progress towards such a characterization by establishing a new, close relationship among LS +-perfect graphs, near-bipartite graphs and a newly introduced concept of full-support-perfect graphs.
publishDate 2017
dc.date.none.fl_str_mv 2017-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/53393
Bianchi, Maria Silvia; Escalante, Mariana Silvina; Nasini, Graciela Leonor; Tuncel, Levent; Lovász–Schrijver SDP-operator, near-perfect graphs and near-bipartite graphs; Springer; Mathematical Programming; 162; 1-2; 3-2017; 201-223
0025-5610
CONICET Digital
CONICET
url http://hdl.handle.net/11336/53393
identifier_str_mv Bianchi, Maria Silvia; Escalante, Mariana Silvina; Nasini, Graciela Leonor; Tuncel, Levent; Lovász–Schrijver SDP-operator, near-perfect graphs and near-bipartite graphs; Springer; Mathematical Programming; 162; 1-2; 3-2017; 201-223
0025-5610
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s10107-016-1035-1
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10107-016-1035-1
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781418148986880
score 12.982451