Lift-and-project ranks of the set covering polytope of circulant matrices
- Autores
- Bianchi, Silvia María; Escalante, Mariana Silvina; Montelar, María Susana
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper, we analyze the behavior of the N and N+ operators (defined by Lovász and Schrijver) and the disjunctive operator due to Balas, Ceria and Cornuéjols, on the linear relaxation of the set covering polytope associated with circulant matrices C k n . We found that for the family of circulant matrices C k sk+1 the disjunctive rank coincides with the Nand N+-rank at the value k − 1. This result provides bounds for lift-and-project ranks of most circulant matrices since C k sk+1 appears as a minor of almost all circulant matrices. According to these operators, we define the strength of facets with respect to the linear relaxation of the set covering polytope and compare the results with a similar measure previously defined by Goemans. We identify facets of maximum strength although the complete description of the set covering polytope of circulant matrices is still unknown. Moreover, considering the matrices C k sk with s ≥ k + 1, we found a family of facets of the corresponding set covering polyhedron, having maximum strength according to the disjunctive and Goemans’ measures.
Fil: Bianchi, Silvia María. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina
Fil: Escalante, Mariana Silvina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina
Fil: Montelar, María Susana. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina - Materia
-
CIRCULANT MATRIX
LIFT-AND-PROJECT OPERATORS
STRENGTH OF FACETS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/270734
Ver los metadatos del registro completo
| id |
CONICETDig_15cc34066879f2e61693d99646cec2da |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/270734 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Lift-and-project ranks of the set covering polytope of circulant matricesBianchi, Silvia MaríaEscalante, Mariana SilvinaMontelar, María SusanaCIRCULANT MATRIXLIFT-AND-PROJECT OPERATORSSTRENGTH OF FACETShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper, we analyze the behavior of the N and N+ operators (defined by Lovász and Schrijver) and the disjunctive operator due to Balas, Ceria and Cornuéjols, on the linear relaxation of the set covering polytope associated with circulant matrices C k n . We found that for the family of circulant matrices C k sk+1 the disjunctive rank coincides with the Nand N+-rank at the value k − 1. This result provides bounds for lift-and-project ranks of most circulant matrices since C k sk+1 appears as a minor of almost all circulant matrices. According to these operators, we define the strength of facets with respect to the linear relaxation of the set covering polytope and compare the results with a similar measure previously defined by Goemans. We identify facets of maximum strength although the complete description of the set covering polytope of circulant matrices is still unknown. Moreover, considering the matrices C k sk with s ≥ k + 1, we found a family of facets of the corresponding set covering polyhedron, having maximum strength according to the disjunctive and Goemans’ measures.Fil: Bianchi, Silvia María. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; ArgentinaFil: Escalante, Mariana Silvina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; ArgentinaFil: Montelar, María Susana. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; ArgentinaElsevier Science2012-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/270734Bianchi, Silvia María; Escalante, Mariana Silvina; Montelar, María Susana; Lift-and-project ranks of the set covering polytope of circulant matrices; Elsevier Science; Discrete Applied Mathematics; 160; 18; 12-2012; 2555-25620166-218XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.dam.2011.07.027info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:10:34Zoai:ri.conicet.gov.ar:11336/270734instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:10:34.662CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Lift-and-project ranks of the set covering polytope of circulant matrices |
| title |
Lift-and-project ranks of the set covering polytope of circulant matrices |
| spellingShingle |
Lift-and-project ranks of the set covering polytope of circulant matrices Bianchi, Silvia María CIRCULANT MATRIX LIFT-AND-PROJECT OPERATORS STRENGTH OF FACETS |
| title_short |
Lift-and-project ranks of the set covering polytope of circulant matrices |
| title_full |
Lift-and-project ranks of the set covering polytope of circulant matrices |
| title_fullStr |
Lift-and-project ranks of the set covering polytope of circulant matrices |
| title_full_unstemmed |
Lift-and-project ranks of the set covering polytope of circulant matrices |
| title_sort |
Lift-and-project ranks of the set covering polytope of circulant matrices |
| dc.creator.none.fl_str_mv |
Bianchi, Silvia María Escalante, Mariana Silvina Montelar, María Susana |
| author |
Bianchi, Silvia María |
| author_facet |
Bianchi, Silvia María Escalante, Mariana Silvina Montelar, María Susana |
| author_role |
author |
| author2 |
Escalante, Mariana Silvina Montelar, María Susana |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
CIRCULANT MATRIX LIFT-AND-PROJECT OPERATORS STRENGTH OF FACETS |
| topic |
CIRCULANT MATRIX LIFT-AND-PROJECT OPERATORS STRENGTH OF FACETS |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
In this paper, we analyze the behavior of the N and N+ operators (defined by Lovász and Schrijver) and the disjunctive operator due to Balas, Ceria and Cornuéjols, on the linear relaxation of the set covering polytope associated with circulant matrices C k n . We found that for the family of circulant matrices C k sk+1 the disjunctive rank coincides with the Nand N+-rank at the value k − 1. This result provides bounds for lift-and-project ranks of most circulant matrices since C k sk+1 appears as a minor of almost all circulant matrices. According to these operators, we define the strength of facets with respect to the linear relaxation of the set covering polytope and compare the results with a similar measure previously defined by Goemans. We identify facets of maximum strength although the complete description of the set covering polytope of circulant matrices is still unknown. Moreover, considering the matrices C k sk with s ≥ k + 1, we found a family of facets of the corresponding set covering polyhedron, having maximum strength according to the disjunctive and Goemans’ measures. Fil: Bianchi, Silvia María. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina Fil: Escalante, Mariana Silvina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina Fil: Montelar, María Susana. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina |
| description |
In this paper, we analyze the behavior of the N and N+ operators (defined by Lovász and Schrijver) and the disjunctive operator due to Balas, Ceria and Cornuéjols, on the linear relaxation of the set covering polytope associated with circulant matrices C k n . We found that for the family of circulant matrices C k sk+1 the disjunctive rank coincides with the Nand N+-rank at the value k − 1. This result provides bounds for lift-and-project ranks of most circulant matrices since C k sk+1 appears as a minor of almost all circulant matrices. According to these operators, we define the strength of facets with respect to the linear relaxation of the set covering polytope and compare the results with a similar measure previously defined by Goemans. We identify facets of maximum strength although the complete description of the set covering polytope of circulant matrices is still unknown. Moreover, considering the matrices C k sk with s ≥ k + 1, we found a family of facets of the corresponding set covering polyhedron, having maximum strength according to the disjunctive and Goemans’ measures. |
| publishDate |
2012 |
| dc.date.none.fl_str_mv |
2012-12 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/270734 Bianchi, Silvia María; Escalante, Mariana Silvina; Montelar, María Susana; Lift-and-project ranks of the set covering polytope of circulant matrices; Elsevier Science; Discrete Applied Mathematics; 160; 18; 12-2012; 2555-2562 0166-218X CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/270734 |
| identifier_str_mv |
Bianchi, Silvia María; Escalante, Mariana Silvina; Montelar, María Susana; Lift-and-project ranks of the set covering polytope of circulant matrices; Elsevier Science; Discrete Applied Mathematics; 160; 18; 12-2012; 2555-2562 0166-218X CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.dam.2011.07.027 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier Science |
| publisher.none.fl_str_mv |
Elsevier Science |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846782492191752192 |
| score |
12.982451 |