Selective pressure against horizontally acquired prokaryotic genes as a driving force of plastid evolution

Autores
Llorente, Briardo; Silva Junqueira de Souza, Flavio; Soto, Gabriela Cynthia; Meyer, Cristian Germán; Alonso, Guillermo Daniel; Flawia, Mirtha Maria; Bravo Almonacid, Fernando Felix; Ayub, Nicolás Daniel; Rodríguez Concepción, Manuel
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The plastid organelle comprises a high proportion of nucleus-encoded proteins that were acquired from different prokaryotic donors via independent horizontal gene transfers following its primary endosymbiotic origin. What forces drove the targeting of these alien proteins to the plastid remains an unresolved evolutionary question. To better understand this process we screened for suitable candidate proteins to recapitulate their prokaryote-to-eukaryote transition. Here we identify the ancient horizontal transfer of a bacterial polyphenol oxidase (PPO) gene to the nuclear genome of an early land plant ancestor and infer the possible mechanism behind the plastidial localization of the encoded enzyme. Arabidopsis plants expressing PPO versions either lacking or harbouring a plastid-targeting signal allowed examining fitness consequences associated with its subcellular localization. Markedly, a deleterious effect on plant growth was highly correlated with PPO activity only when producing the non-targeted enzyme, suggesting that selection favoured the fixation of plastid-targeted protein versions. Our results reveal a possible evolutionary mechanism of how selection against heterologous genes encoding cytosolic proteins contributed in incrementing plastid proteome complexity from non-endosymbiotic gene sources, a process that may also impact mitochondrial evolution.
Fil: Llorente, Briardo. Centre for Research in Agricultural Genomics; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentina
Fil: Silva Junqueira de Souza, Flavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentina
Fil: Soto, Gabriela Cynthia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentina
Fil: Meyer, Cristian Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentina
Fil: Alonso, Guillermo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular; Argentina
Fil: Flawia, Mirtha Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular; Argentina
Fil: Bravo Almonacid, Fernando Felix. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina
Fil: Ayub, Nicolás Daniel. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Genética; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Rodríguez Concepción, Manuel. Centre for Research in Agricultural Genomics; España
Materia
PLASTID
PLANT
METABOLISM
EVOLUTION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/44776

id CONICETDig_e3f2a0c2492f310cb434c5a257df1176
oai_identifier_str oai:ri.conicet.gov.ar:11336/44776
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Selective pressure against horizontally acquired prokaryotic genes as a driving force of plastid evolutionLlorente, BriardoSilva Junqueira de Souza, FlavioSoto, Gabriela CynthiaMeyer, Cristian GermánAlonso, Guillermo DanielFlawia, Mirtha MariaBravo Almonacid, Fernando FelixAyub, Nicolás DanielRodríguez Concepción, ManuelPLASTIDPLANTMETABOLISMEVOLUTIONhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1The plastid organelle comprises a high proportion of nucleus-encoded proteins that were acquired from different prokaryotic donors via independent horizontal gene transfers following its primary endosymbiotic origin. What forces drove the targeting of these alien proteins to the plastid remains an unresolved evolutionary question. To better understand this process we screened for suitable candidate proteins to recapitulate their prokaryote-to-eukaryote transition. Here we identify the ancient horizontal transfer of a bacterial polyphenol oxidase (PPO) gene to the nuclear genome of an early land plant ancestor and infer the possible mechanism behind the plastidial localization of the encoded enzyme. Arabidopsis plants expressing PPO versions either lacking or harbouring a plastid-targeting signal allowed examining fitness consequences associated with its subcellular localization. Markedly, a deleterious effect on plant growth was highly correlated with PPO activity only when producing the non-targeted enzyme, suggesting that selection favoured the fixation of plastid-targeted protein versions. Our results reveal a possible evolutionary mechanism of how selection against heterologous genes encoding cytosolic proteins contributed in incrementing plastid proteome complexity from non-endosymbiotic gene sources, a process that may also impact mitochondrial evolution.Fil: Llorente, Briardo. Centre for Research in Agricultural Genomics; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Silva Junqueira de Souza, Flavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Soto, Gabriela Cynthia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Meyer, Cristian Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Alonso, Guillermo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular; ArgentinaFil: Flawia, Mirtha Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular; ArgentinaFil: Bravo Almonacid, Fernando Felix. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; ArgentinaFil: Ayub, Nicolás Daniel. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Genética; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rodríguez Concepción, Manuel. Centre for Research in Agricultural Genomics; EspañaNature Publishing Group2016-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/44776Llorente, Briardo; Silva Junqueira de Souza, Flavio; Soto, Gabriela Cynthia; Meyer, Cristian Germán; Alonso, Guillermo Daniel; et al.; Selective pressure against horizontally acquired prokaryotic genes as a driving force of plastid evolution; Nature Publishing Group; Scientific Reports; 6; 1903; 1-2016; 1-102045-2322CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/srep19036info:eu-repo/semantics/altIdentifier/doi/10.1038/srep19036info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:52:10Zoai:ri.conicet.gov.ar:11336/44776instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:52:11.071CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Selective pressure against horizontally acquired prokaryotic genes as a driving force of plastid evolution
title Selective pressure against horizontally acquired prokaryotic genes as a driving force of plastid evolution
spellingShingle Selective pressure against horizontally acquired prokaryotic genes as a driving force of plastid evolution
Llorente, Briardo
PLASTID
PLANT
METABOLISM
EVOLUTION
title_short Selective pressure against horizontally acquired prokaryotic genes as a driving force of plastid evolution
title_full Selective pressure against horizontally acquired prokaryotic genes as a driving force of plastid evolution
title_fullStr Selective pressure against horizontally acquired prokaryotic genes as a driving force of plastid evolution
title_full_unstemmed Selective pressure against horizontally acquired prokaryotic genes as a driving force of plastid evolution
title_sort Selective pressure against horizontally acquired prokaryotic genes as a driving force of plastid evolution
dc.creator.none.fl_str_mv Llorente, Briardo
Silva Junqueira de Souza, Flavio
Soto, Gabriela Cynthia
Meyer, Cristian Germán
Alonso, Guillermo Daniel
Flawia, Mirtha Maria
Bravo Almonacid, Fernando Felix
Ayub, Nicolás Daniel
Rodríguez Concepción, Manuel
author Llorente, Briardo
author_facet Llorente, Briardo
Silva Junqueira de Souza, Flavio
Soto, Gabriela Cynthia
Meyer, Cristian Germán
Alonso, Guillermo Daniel
Flawia, Mirtha Maria
Bravo Almonacid, Fernando Felix
Ayub, Nicolás Daniel
Rodríguez Concepción, Manuel
author_role author
author2 Silva Junqueira de Souza, Flavio
Soto, Gabriela Cynthia
Meyer, Cristian Germán
Alonso, Guillermo Daniel
Flawia, Mirtha Maria
Bravo Almonacid, Fernando Felix
Ayub, Nicolás Daniel
Rodríguez Concepción, Manuel
author2_role author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv PLASTID
PLANT
METABOLISM
EVOLUTION
topic PLASTID
PLANT
METABOLISM
EVOLUTION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The plastid organelle comprises a high proportion of nucleus-encoded proteins that were acquired from different prokaryotic donors via independent horizontal gene transfers following its primary endosymbiotic origin. What forces drove the targeting of these alien proteins to the plastid remains an unresolved evolutionary question. To better understand this process we screened for suitable candidate proteins to recapitulate their prokaryote-to-eukaryote transition. Here we identify the ancient horizontal transfer of a bacterial polyphenol oxidase (PPO) gene to the nuclear genome of an early land plant ancestor and infer the possible mechanism behind the plastidial localization of the encoded enzyme. Arabidopsis plants expressing PPO versions either lacking or harbouring a plastid-targeting signal allowed examining fitness consequences associated with its subcellular localization. Markedly, a deleterious effect on plant growth was highly correlated with PPO activity only when producing the non-targeted enzyme, suggesting that selection favoured the fixation of plastid-targeted protein versions. Our results reveal a possible evolutionary mechanism of how selection against heterologous genes encoding cytosolic proteins contributed in incrementing plastid proteome complexity from non-endosymbiotic gene sources, a process that may also impact mitochondrial evolution.
Fil: Llorente, Briardo. Centre for Research in Agricultural Genomics; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentina
Fil: Silva Junqueira de Souza, Flavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentina
Fil: Soto, Gabriela Cynthia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentina
Fil: Meyer, Cristian Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentina
Fil: Alonso, Guillermo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular; Argentina
Fil: Flawia, Mirtha Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular; Argentina
Fil: Bravo Almonacid, Fernando Felix. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina
Fil: Ayub, Nicolás Daniel. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Genética; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Rodríguez Concepción, Manuel. Centre for Research in Agricultural Genomics; España
description The plastid organelle comprises a high proportion of nucleus-encoded proteins that were acquired from different prokaryotic donors via independent horizontal gene transfers following its primary endosymbiotic origin. What forces drove the targeting of these alien proteins to the plastid remains an unresolved evolutionary question. To better understand this process we screened for suitable candidate proteins to recapitulate their prokaryote-to-eukaryote transition. Here we identify the ancient horizontal transfer of a bacterial polyphenol oxidase (PPO) gene to the nuclear genome of an early land plant ancestor and infer the possible mechanism behind the plastidial localization of the encoded enzyme. Arabidopsis plants expressing PPO versions either lacking or harbouring a plastid-targeting signal allowed examining fitness consequences associated with its subcellular localization. Markedly, a deleterious effect on plant growth was highly correlated with PPO activity only when producing the non-targeted enzyme, suggesting that selection favoured the fixation of plastid-targeted protein versions. Our results reveal a possible evolutionary mechanism of how selection against heterologous genes encoding cytosolic proteins contributed in incrementing plastid proteome complexity from non-endosymbiotic gene sources, a process that may also impact mitochondrial evolution.
publishDate 2016
dc.date.none.fl_str_mv 2016-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/44776
Llorente, Briardo; Silva Junqueira de Souza, Flavio; Soto, Gabriela Cynthia; Meyer, Cristian Germán; Alonso, Guillermo Daniel; et al.; Selective pressure against horizontally acquired prokaryotic genes as a driving force of plastid evolution; Nature Publishing Group; Scientific Reports; 6; 1903; 1-2016; 1-10
2045-2322
CONICET Digital
CONICET
url http://hdl.handle.net/11336/44776
identifier_str_mv Llorente, Briardo; Silva Junqueira de Souza, Flavio; Soto, Gabriela Cynthia; Meyer, Cristian Germán; Alonso, Guillermo Daniel; et al.; Selective pressure against horizontally acquired prokaryotic genes as a driving force of plastid evolution; Nature Publishing Group; Scientific Reports; 6; 1903; 1-2016; 1-10
2045-2322
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/srep19036
info:eu-repo/semantics/altIdentifier/doi/10.1038/srep19036
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Nature Publishing Group
publisher.none.fl_str_mv Nature Publishing Group
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269141911732224
score 13.13397