On the first Chvátal closure of the set covering polyhedron related to circulant matrices
- Autores
- Tolomei, Paola Beatriz; Torres, Luis Miguel
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the set covering polyhedron related to circulant matrices. In particular, our goal is to characterize the first Chvátal closure of the usual fractional relaxation. We present a family of valid inequalities that generalizes the family of minor inequalities previously reported in the literature. This family includes new facet-defining inequalities for the set covering polyhedron.
Fil: Tolomei, Paola Beatriz. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Torres, Luis Miguel. Escuela Politécnica Nacional; Ecuador - Materia
-
Set Covering
Circulant Matrices
Chvátal Closure - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/21871
Ver los metadatos del registro completo
id |
CONICETDig_e3ca7a3a80e3ffe0725283205368c81b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/21871 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On the first Chvátal closure of the set covering polyhedron related to circulant matricesTolomei, Paola BeatrizTorres, Luis MiguelSet CoveringCirculant MatricesChvátal Closurehttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study the set covering polyhedron related to circulant matrices. In particular, our goal is to characterize the first Chvátal closure of the usual fractional relaxation. We present a family of valid inequalities that generalizes the family of minor inequalities previously reported in the literature. This family includes new facet-defining inequalities for the set covering polyhedron.Fil: Tolomei, Paola Beatriz. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Torres, Luis Miguel. Escuela Politécnica Nacional; EcuadorElsevier2013-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/21871Tolomei, Paola Beatriz; Torres, Luis Miguel; On the first Chvátal closure of the set covering polyhedron related to circulant matrices; Elsevier; Electronic Notes in Discrete Mathematics; 44; 11-2013; 377-3831571-0653CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.endm.2013.10.059info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1571065313002758info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:59:09Zoai:ri.conicet.gov.ar:11336/21871instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:59:10.046CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On the first Chvátal closure of the set covering polyhedron related to circulant matrices |
title |
On the first Chvátal closure of the set covering polyhedron related to circulant matrices |
spellingShingle |
On the first Chvátal closure of the set covering polyhedron related to circulant matrices Tolomei, Paola Beatriz Set Covering Circulant Matrices Chvátal Closure |
title_short |
On the first Chvátal closure of the set covering polyhedron related to circulant matrices |
title_full |
On the first Chvátal closure of the set covering polyhedron related to circulant matrices |
title_fullStr |
On the first Chvátal closure of the set covering polyhedron related to circulant matrices |
title_full_unstemmed |
On the first Chvátal closure of the set covering polyhedron related to circulant matrices |
title_sort |
On the first Chvátal closure of the set covering polyhedron related to circulant matrices |
dc.creator.none.fl_str_mv |
Tolomei, Paola Beatriz Torres, Luis Miguel |
author |
Tolomei, Paola Beatriz |
author_facet |
Tolomei, Paola Beatriz Torres, Luis Miguel |
author_role |
author |
author2 |
Torres, Luis Miguel |
author2_role |
author |
dc.subject.none.fl_str_mv |
Set Covering Circulant Matrices Chvátal Closure |
topic |
Set Covering Circulant Matrices Chvátal Closure |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study the set covering polyhedron related to circulant matrices. In particular, our goal is to characterize the first Chvátal closure of the usual fractional relaxation. We present a family of valid inequalities that generalizes the family of minor inequalities previously reported in the literature. This family includes new facet-defining inequalities for the set covering polyhedron. Fil: Tolomei, Paola Beatriz. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Torres, Luis Miguel. Escuela Politécnica Nacional; Ecuador |
description |
We study the set covering polyhedron related to circulant matrices. In particular, our goal is to characterize the first Chvátal closure of the usual fractional relaxation. We present a family of valid inequalities that generalizes the family of minor inequalities previously reported in the literature. This family includes new facet-defining inequalities for the set covering polyhedron. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/21871 Tolomei, Paola Beatriz; Torres, Luis Miguel; On the first Chvátal closure of the set covering polyhedron related to circulant matrices; Elsevier; Electronic Notes in Discrete Mathematics; 44; 11-2013; 377-383 1571-0653 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/21871 |
identifier_str_mv |
Tolomei, Paola Beatriz; Torres, Luis Miguel; On the first Chvátal closure of the set covering polyhedron related to circulant matrices; Elsevier; Electronic Notes in Discrete Mathematics; 44; 11-2013; 377-383 1571-0653 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.endm.2013.10.059 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1571065313002758 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269564960768000 |
score |
13.13397 |