Vertex adjacencies in the set covering polyhedron
- Autores
- Aguilera, Néstor Edgardo; Katz, Ricardo David; Tolomei, Paola Beatriz
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We describe the adjacency of vertices of the (unbounded version of the) set covering polyhedron, in a similar way to the description given by Chvátal for the stable set polytope. We find a sufficient condition for adjacency, and characterize it with similar conditions in the case where the underlying matrix is row circular. We apply our findings to show a new infinite family of minimally nonideal matrices.
Fil: Aguilera, Néstor Edgardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina
Fil: Katz, Ricardo David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Tolomei, Paola Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina - Materia
-
Polyhedral Combinatorics
Set Covering Polyhedron
Vertex Adjacency - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/53156
Ver los metadatos del registro completo
| id |
CONICETDig_d9c83c8ae870079aabf5df94b3b8d0db |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/53156 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Vertex adjacencies in the set covering polyhedronAguilera, Néstor EdgardoKatz, Ricardo DavidTolomei, Paola BeatrizPolyhedral CombinatoricsSet Covering PolyhedronVertex Adjacencyhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We describe the adjacency of vertices of the (unbounded version of the) set covering polyhedron, in a similar way to the description given by Chvátal for the stable set polytope. We find a sufficient condition for adjacency, and characterize it with similar conditions in the case where the underlying matrix is row circular. We apply our findings to show a new infinite family of minimally nonideal matrices.Fil: Aguilera, Néstor Edgardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; ArgentinaFil: Katz, Ricardo David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Tolomei, Paola Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; ArgentinaElsevier Science2017-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/53156Aguilera, Néstor Edgardo; Katz, Ricardo David; Tolomei, Paola Beatriz; Vertex adjacencies in the set covering polyhedron; Elsevier Science; Discrete Applied Mathematics; 218; 2-2017; 40-560166-218XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.dam.2016.10.024info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0166218X16305066info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T09:46:23Zoai:ri.conicet.gov.ar:11336/53156instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 09:46:23.426CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Vertex adjacencies in the set covering polyhedron |
| title |
Vertex adjacencies in the set covering polyhedron |
| spellingShingle |
Vertex adjacencies in the set covering polyhedron Aguilera, Néstor Edgardo Polyhedral Combinatorics Set Covering Polyhedron Vertex Adjacency |
| title_short |
Vertex adjacencies in the set covering polyhedron |
| title_full |
Vertex adjacencies in the set covering polyhedron |
| title_fullStr |
Vertex adjacencies in the set covering polyhedron |
| title_full_unstemmed |
Vertex adjacencies in the set covering polyhedron |
| title_sort |
Vertex adjacencies in the set covering polyhedron |
| dc.creator.none.fl_str_mv |
Aguilera, Néstor Edgardo Katz, Ricardo David Tolomei, Paola Beatriz |
| author |
Aguilera, Néstor Edgardo |
| author_facet |
Aguilera, Néstor Edgardo Katz, Ricardo David Tolomei, Paola Beatriz |
| author_role |
author |
| author2 |
Katz, Ricardo David Tolomei, Paola Beatriz |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Polyhedral Combinatorics Set Covering Polyhedron Vertex Adjacency |
| topic |
Polyhedral Combinatorics Set Covering Polyhedron Vertex Adjacency |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We describe the adjacency of vertices of the (unbounded version of the) set covering polyhedron, in a similar way to the description given by Chvátal for the stable set polytope. We find a sufficient condition for adjacency, and characterize it with similar conditions in the case where the underlying matrix is row circular. We apply our findings to show a new infinite family of minimally nonideal matrices. Fil: Aguilera, Néstor Edgardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina Fil: Katz, Ricardo David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina Fil: Tolomei, Paola Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina |
| description |
We describe the adjacency of vertices of the (unbounded version of the) set covering polyhedron, in a similar way to the description given by Chvátal for the stable set polytope. We find a sufficient condition for adjacency, and characterize it with similar conditions in the case where the underlying matrix is row circular. We apply our findings to show a new infinite family of minimally nonideal matrices. |
| publishDate |
2017 |
| dc.date.none.fl_str_mv |
2017-02 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/53156 Aguilera, Néstor Edgardo; Katz, Ricardo David; Tolomei, Paola Beatriz; Vertex adjacencies in the set covering polyhedron; Elsevier Science; Discrete Applied Mathematics; 218; 2-2017; 40-56 0166-218X CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/53156 |
| identifier_str_mv |
Aguilera, Néstor Edgardo; Katz, Ricardo David; Tolomei, Paola Beatriz; Vertex adjacencies in the set covering polyhedron; Elsevier Science; Discrete Applied Mathematics; 218; 2-2017; 40-56 0166-218X CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.dam.2016.10.024 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0166218X16305066 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier Science |
| publisher.none.fl_str_mv |
Elsevier Science |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847977111519756288 |
| score |
13.087074 |