Vertex adjacencies in the set covering polyhedron
- Autores
- Aguilera, Néstor Edgardo; Katz, Ricardo David; Tolomei, Paola Beatriz
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We describe the adjacency of vertices of the (unbounded version of the) set covering polyhedron, in a similar way to the description given by Chvátal for the stable set polytope. We find a sufficient condition for adjacency, and characterize it with similar conditions in the case where the underlying matrix is row circular. We apply our findings to show a new infinite family of minimally nonideal matrices.
Fil: Aguilera, Néstor Edgardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina
Fil: Katz, Ricardo David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Tolomei, Paola Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina - Materia
-
Polyhedral Combinatorics
Set Covering Polyhedron
Vertex Adjacency - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/53156
Ver los metadatos del registro completo
id |
CONICETDig_d9c83c8ae870079aabf5df94b3b8d0db |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/53156 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Vertex adjacencies in the set covering polyhedronAguilera, Néstor EdgardoKatz, Ricardo DavidTolomei, Paola BeatrizPolyhedral CombinatoricsSet Covering PolyhedronVertex Adjacencyhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We describe the adjacency of vertices of the (unbounded version of the) set covering polyhedron, in a similar way to the description given by Chvátal for the stable set polytope. We find a sufficient condition for adjacency, and characterize it with similar conditions in the case where the underlying matrix is row circular. We apply our findings to show a new infinite family of minimally nonideal matrices.Fil: Aguilera, Néstor Edgardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; ArgentinaFil: Katz, Ricardo David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Tolomei, Paola Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; ArgentinaElsevier Science2017-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/53156Aguilera, Néstor Edgardo; Katz, Ricardo David; Tolomei, Paola Beatriz; Vertex adjacencies in the set covering polyhedron; Elsevier Science; Discrete Applied Mathematics; 218; 2-2017; 40-560166-218XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.dam.2016.10.024info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0166218X16305066info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:49:59Zoai:ri.conicet.gov.ar:11336/53156instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:49:59.461CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Vertex adjacencies in the set covering polyhedron |
title |
Vertex adjacencies in the set covering polyhedron |
spellingShingle |
Vertex adjacencies in the set covering polyhedron Aguilera, Néstor Edgardo Polyhedral Combinatorics Set Covering Polyhedron Vertex Adjacency |
title_short |
Vertex adjacencies in the set covering polyhedron |
title_full |
Vertex adjacencies in the set covering polyhedron |
title_fullStr |
Vertex adjacencies in the set covering polyhedron |
title_full_unstemmed |
Vertex adjacencies in the set covering polyhedron |
title_sort |
Vertex adjacencies in the set covering polyhedron |
dc.creator.none.fl_str_mv |
Aguilera, Néstor Edgardo Katz, Ricardo David Tolomei, Paola Beatriz |
author |
Aguilera, Néstor Edgardo |
author_facet |
Aguilera, Néstor Edgardo Katz, Ricardo David Tolomei, Paola Beatriz |
author_role |
author |
author2 |
Katz, Ricardo David Tolomei, Paola Beatriz |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Polyhedral Combinatorics Set Covering Polyhedron Vertex Adjacency |
topic |
Polyhedral Combinatorics Set Covering Polyhedron Vertex Adjacency |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We describe the adjacency of vertices of the (unbounded version of the) set covering polyhedron, in a similar way to the description given by Chvátal for the stable set polytope. We find a sufficient condition for adjacency, and characterize it with similar conditions in the case where the underlying matrix is row circular. We apply our findings to show a new infinite family of minimally nonideal matrices. Fil: Aguilera, Néstor Edgardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina Fil: Katz, Ricardo David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina Fil: Tolomei, Paola Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina |
description |
We describe the adjacency of vertices of the (unbounded version of the) set covering polyhedron, in a similar way to the description given by Chvátal for the stable set polytope. We find a sufficient condition for adjacency, and characterize it with similar conditions in the case where the underlying matrix is row circular. We apply our findings to show a new infinite family of minimally nonideal matrices. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/53156 Aguilera, Néstor Edgardo; Katz, Ricardo David; Tolomei, Paola Beatriz; Vertex adjacencies in the set covering polyhedron; Elsevier Science; Discrete Applied Mathematics; 218; 2-2017; 40-56 0166-218X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/53156 |
identifier_str_mv |
Aguilera, Néstor Edgardo; Katz, Ricardo David; Tolomei, Paola Beatriz; Vertex adjacencies in the set covering polyhedron; Elsevier Science; Discrete Applied Mathematics; 218; 2-2017; 40-56 0166-218X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.dam.2016.10.024 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0166218X16305066 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269006056128512 |
score |
13.13397 |