Generalized minor inequalities for the set covering polyhedron related to circulant matrices

Autores
Tolomei, Paola Beatriz; Torres, Luis Miguel
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study the set covering polyhedron related to circulant matrices. In particular, our goal is to characterize the first Chvátal closure of the usual fractional relaxation. We present a family of valid inequalities that generalizes the family of minor inequalities previously reported in the literature and includes new facet-defining inequalities. Furthermore, we propose a polynomial time separation algorithm for a particular subfamily of these inequalities.
Fil: Tolomei, Paola Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Torres, Luis Miguel. Escuela Politécnica Nacional; Ecuador
Materia
CHVÁTAL CLOSURE
CIRCULANT MATRICES
SET COVERING
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/52710

id CONICETDig_1e1b1effa1b109343cd8b51338e358a3
oai_identifier_str oai:ri.conicet.gov.ar:11336/52710
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Generalized minor inequalities for the set covering polyhedron related to circulant matricesTolomei, Paola BeatrizTorres, Luis MiguelCHVÁTAL CLOSURECIRCULANT MATRICESSET COVERINGhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study the set covering polyhedron related to circulant matrices. In particular, our goal is to characterize the first Chvátal closure of the usual fractional relaxation. We present a family of valid inequalities that generalizes the family of minor inequalities previously reported in the literature and includes new facet-defining inequalities. Furthermore, we propose a polynomial time separation algorithm for a particular subfamily of these inequalities.Fil: Tolomei, Paola Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Torres, Luis Miguel. Escuela Politécnica Nacional; EcuadorElsevier Science2016-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/52710Tolomei, Paola Beatriz; Torres, Luis Miguel; Generalized minor inequalities for the set covering polyhedron related to circulant matrices; Elsevier Science; Discrete Applied Mathematics; 210; 9-2016; 214-2220166-218XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.dam.2015.06.034info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1406.4560info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0166218X15003200info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:08:01Zoai:ri.conicet.gov.ar:11336/52710instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:08:02.247CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Generalized minor inequalities for the set covering polyhedron related to circulant matrices
title Generalized minor inequalities for the set covering polyhedron related to circulant matrices
spellingShingle Generalized minor inequalities for the set covering polyhedron related to circulant matrices
Tolomei, Paola Beatriz
CHVÁTAL CLOSURE
CIRCULANT MATRICES
SET COVERING
title_short Generalized minor inequalities for the set covering polyhedron related to circulant matrices
title_full Generalized minor inequalities for the set covering polyhedron related to circulant matrices
title_fullStr Generalized minor inequalities for the set covering polyhedron related to circulant matrices
title_full_unstemmed Generalized minor inequalities for the set covering polyhedron related to circulant matrices
title_sort Generalized minor inequalities for the set covering polyhedron related to circulant matrices
dc.creator.none.fl_str_mv Tolomei, Paola Beatriz
Torres, Luis Miguel
author Tolomei, Paola Beatriz
author_facet Tolomei, Paola Beatriz
Torres, Luis Miguel
author_role author
author2 Torres, Luis Miguel
author2_role author
dc.subject.none.fl_str_mv CHVÁTAL CLOSURE
CIRCULANT MATRICES
SET COVERING
topic CHVÁTAL CLOSURE
CIRCULANT MATRICES
SET COVERING
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study the set covering polyhedron related to circulant matrices. In particular, our goal is to characterize the first Chvátal closure of the usual fractional relaxation. We present a family of valid inequalities that generalizes the family of minor inequalities previously reported in the literature and includes new facet-defining inequalities. Furthermore, we propose a polynomial time separation algorithm for a particular subfamily of these inequalities.
Fil: Tolomei, Paola Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Torres, Luis Miguel. Escuela Politécnica Nacional; Ecuador
description We study the set covering polyhedron related to circulant matrices. In particular, our goal is to characterize the first Chvátal closure of the usual fractional relaxation. We present a family of valid inequalities that generalizes the family of minor inequalities previously reported in the literature and includes new facet-defining inequalities. Furthermore, we propose a polynomial time separation algorithm for a particular subfamily of these inequalities.
publishDate 2016
dc.date.none.fl_str_mv 2016-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/52710
Tolomei, Paola Beatriz; Torres, Luis Miguel; Generalized minor inequalities for the set covering polyhedron related to circulant matrices; Elsevier Science; Discrete Applied Mathematics; 210; 9-2016; 214-222
0166-218X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/52710
identifier_str_mv Tolomei, Paola Beatriz; Torres, Luis Miguel; Generalized minor inequalities for the set covering polyhedron related to circulant matrices; Elsevier Science; Discrete Applied Mathematics; 210; 9-2016; 214-222
0166-218X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.dam.2015.06.034
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1406.4560
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0166218X15003200
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270028512100352
score 13.13397