State Estimation and Nonlinear Tracking Control Simulation Approach: Application to a Bioethanol Production System
- Autores
- Fernández Puchol, María Cecilia; Pantano, Maria Nadia; Rodriguez Aguilar, Leandro Pedro Faustino; Scaglia, Gustavo Juan Eduardo
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Tracking control of specifc variables is key to achieve a proper fermentation. This paper analyzes a fed-batch bioethanol production process. For this system, a controller design based on linear algebra is proposed. Moreover, to achieve a reliable control, on-line monitoring of certain variables is needed. In this sense, for unmeasurable variables, state estimators based on Gaussian processes are designed. Cell, ethanol and glycerol concentrations are predicted with only substrates measurement. Simulation results when the controller and estimators are coupled, are shown. Furthermore, the algorithms were tested with parametric uncertainties and disturbances in the control action, and are compared, in all cases, with neural networks estimators (previous work). Bayesian estimators show a performance improvement, which is refected in a decrease of the total error. Proposed techniques give reliable monitoring and control tools, with a low computational and economic cost, and less mathematical complexity than neural network estimators.
Fil: Fernández Puchol, María Cecilia. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina
Fil: Pantano, Maria Nadia. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina
Fil: Rodriguez Aguilar, Leandro Pedro Faustino. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina
Fil: Scaglia, Gustavo Juan Eduardo. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina - Materia
-
ON-LINE MONITORING
PROFILES TRACKING CONTROL
FED-BATCH BIOPROCESS
NON-LINEAR AND MULTIVARIABLE SYSTEM
STATE ESTIMATION
GAUSSIAN PROCESS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/152828
Ver los metadatos del registro completo
| id |
CONICETDig_e3913ffaf7a81cbe238d2bd744e3d3d3 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/152828 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
State Estimation and Nonlinear Tracking Control Simulation Approach: Application to a Bioethanol Production SystemFernández Puchol, María CeciliaPantano, Maria NadiaRodriguez Aguilar, Leandro Pedro FaustinoScaglia, Gustavo Juan EduardoON-LINE MONITORINGPROFILES TRACKING CONTROLFED-BATCH BIOPROCESSNON-LINEAR AND MULTIVARIABLE SYSTEMSTATE ESTIMATIONGAUSSIAN PROCESShttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2Tracking control of specifc variables is key to achieve a proper fermentation. This paper analyzes a fed-batch bioethanol production process. For this system, a controller design based on linear algebra is proposed. Moreover, to achieve a reliable control, on-line monitoring of certain variables is needed. In this sense, for unmeasurable variables, state estimators based on Gaussian processes are designed. Cell, ethanol and glycerol concentrations are predicted with only substrates measurement. Simulation results when the controller and estimators are coupled, are shown. Furthermore, the algorithms were tested with parametric uncertainties and disturbances in the control action, and are compared, in all cases, with neural networks estimators (previous work). Bayesian estimators show a performance improvement, which is refected in a decrease of the total error. Proposed techniques give reliable monitoring and control tools, with a low computational and economic cost, and less mathematical complexity than neural network estimators.Fil: Fernández Puchol, María Cecilia. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; ArgentinaFil: Pantano, Maria Nadia. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; ArgentinaFil: Rodriguez Aguilar, Leandro Pedro Faustino. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; ArgentinaFil: Scaglia, Gustavo Juan Eduardo. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; ArgentinaSpringer2021-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/152828Fernández Puchol, María Cecilia; Pantano, Maria Nadia; Rodriguez Aguilar, Leandro Pedro Faustino; Scaglia, Gustavo Juan Eduardo; State Estimation and Nonlinear Tracking Control Simulation Approach: Application to a Bioethanol Production System; Springer; Bioprocess And Biosystems Engineering; 44; 8-2021; 1755-17681615-75911615-7605CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00449-021-02558-yinfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00449-021-02558-yinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-29T12:51:39Zoai:ri.conicet.gov.ar:11336/152828instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-29 12:51:40.201CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
State Estimation and Nonlinear Tracking Control Simulation Approach: Application to a Bioethanol Production System |
| title |
State Estimation and Nonlinear Tracking Control Simulation Approach: Application to a Bioethanol Production System |
| spellingShingle |
State Estimation and Nonlinear Tracking Control Simulation Approach: Application to a Bioethanol Production System Fernández Puchol, María Cecilia ON-LINE MONITORING PROFILES TRACKING CONTROL FED-BATCH BIOPROCESS NON-LINEAR AND MULTIVARIABLE SYSTEM STATE ESTIMATION GAUSSIAN PROCESS |
| title_short |
State Estimation and Nonlinear Tracking Control Simulation Approach: Application to a Bioethanol Production System |
| title_full |
State Estimation and Nonlinear Tracking Control Simulation Approach: Application to a Bioethanol Production System |
| title_fullStr |
State Estimation and Nonlinear Tracking Control Simulation Approach: Application to a Bioethanol Production System |
| title_full_unstemmed |
State Estimation and Nonlinear Tracking Control Simulation Approach: Application to a Bioethanol Production System |
| title_sort |
State Estimation and Nonlinear Tracking Control Simulation Approach: Application to a Bioethanol Production System |
| dc.creator.none.fl_str_mv |
Fernández Puchol, María Cecilia Pantano, Maria Nadia Rodriguez Aguilar, Leandro Pedro Faustino Scaglia, Gustavo Juan Eduardo |
| author |
Fernández Puchol, María Cecilia |
| author_facet |
Fernández Puchol, María Cecilia Pantano, Maria Nadia Rodriguez Aguilar, Leandro Pedro Faustino Scaglia, Gustavo Juan Eduardo |
| author_role |
author |
| author2 |
Pantano, Maria Nadia Rodriguez Aguilar, Leandro Pedro Faustino Scaglia, Gustavo Juan Eduardo |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
ON-LINE MONITORING PROFILES TRACKING CONTROL FED-BATCH BIOPROCESS NON-LINEAR AND MULTIVARIABLE SYSTEM STATE ESTIMATION GAUSSIAN PROCESS |
| topic |
ON-LINE MONITORING PROFILES TRACKING CONTROL FED-BATCH BIOPROCESS NON-LINEAR AND MULTIVARIABLE SYSTEM STATE ESTIMATION GAUSSIAN PROCESS |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
| dc.description.none.fl_txt_mv |
Tracking control of specifc variables is key to achieve a proper fermentation. This paper analyzes a fed-batch bioethanol production process. For this system, a controller design based on linear algebra is proposed. Moreover, to achieve a reliable control, on-line monitoring of certain variables is needed. In this sense, for unmeasurable variables, state estimators based on Gaussian processes are designed. Cell, ethanol and glycerol concentrations are predicted with only substrates measurement. Simulation results when the controller and estimators are coupled, are shown. Furthermore, the algorithms were tested with parametric uncertainties and disturbances in the control action, and are compared, in all cases, with neural networks estimators (previous work). Bayesian estimators show a performance improvement, which is refected in a decrease of the total error. Proposed techniques give reliable monitoring and control tools, with a low computational and economic cost, and less mathematical complexity than neural network estimators. Fil: Fernández Puchol, María Cecilia. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina Fil: Pantano, Maria Nadia. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina Fil: Rodriguez Aguilar, Leandro Pedro Faustino. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina Fil: Scaglia, Gustavo Juan Eduardo. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina |
| description |
Tracking control of specifc variables is key to achieve a proper fermentation. This paper analyzes a fed-batch bioethanol production process. For this system, a controller design based on linear algebra is proposed. Moreover, to achieve a reliable control, on-line monitoring of certain variables is needed. In this sense, for unmeasurable variables, state estimators based on Gaussian processes are designed. Cell, ethanol and glycerol concentrations are predicted with only substrates measurement. Simulation results when the controller and estimators are coupled, are shown. Furthermore, the algorithms were tested with parametric uncertainties and disturbances in the control action, and are compared, in all cases, with neural networks estimators (previous work). Bayesian estimators show a performance improvement, which is refected in a decrease of the total error. Proposed techniques give reliable monitoring and control tools, with a low computational and economic cost, and less mathematical complexity than neural network estimators. |
| publishDate |
2021 |
| dc.date.none.fl_str_mv |
2021-08 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/152828 Fernández Puchol, María Cecilia; Pantano, Maria Nadia; Rodriguez Aguilar, Leandro Pedro Faustino; Scaglia, Gustavo Juan Eduardo; State Estimation and Nonlinear Tracking Control Simulation Approach: Application to a Bioethanol Production System; Springer; Bioprocess And Biosystems Engineering; 44; 8-2021; 1755-1768 1615-7591 1615-7605 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/152828 |
| identifier_str_mv |
Fernández Puchol, María Cecilia; Pantano, Maria Nadia; Rodriguez Aguilar, Leandro Pedro Faustino; Scaglia, Gustavo Juan Eduardo; State Estimation and Nonlinear Tracking Control Simulation Approach: Application to a Bioethanol Production System; Springer; Bioprocess And Biosystems Engineering; 44; 8-2021; 1755-1768 1615-7591 1615-7605 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00449-021-02558-y info:eu-repo/semantics/altIdentifier/doi/10.1007/s00449-021-02558-y |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Springer |
| publisher.none.fl_str_mv |
Springer |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847427599480913920 |
| score |
13.10058 |