Behavior comparison for biomass observers in batch processes
- Autores
- Amicarelli, Adriana Natacha; Quintero, Olga; Di Sciascio, Fernando Agustín
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- On-line estimation of biomass concentration in batch biotechnological processes is an active area of research because normally, the biomass is the desired process product output, and also because it is necessary for control purposes to replace the unavailable biomass concentration measurements with reliable and robust on-line estimations. This work presents five different alternatives to face the problem of biomass estimation in a particular batch bioprocess (δ-endotoxins production of Bacillus thuringiensis), namely: a phenomenological estimator based on dissolved oxygen balance, an extended Kalman filter estimator, a Gaussian process regression-based estimator, an artificial neural networks-based estimator, and finally, an estimator based on information fusion by a decentralized Kalman filter. Each proposed biomass estimation method has its own advantages and drawbacks according to their ability to take into account the model uncertainties and the measurement errors. First, the design techniques of these five biomass estimators are exposed, and finally, the behavior of each estimation method is compared. The availability of efficient biomass estimators is of great importance for engineers because, on the one hand, it allows developing new control strategies for other bioprocess variables such as for instance: the growth rate of the microorganism, the dissolved oxygen concentration, and so on. On the other hand, it is also important to improve the performance of the bioprocess optimization procedure. This work also aims to show the evolution on biomass estimation techniques from classical to more contemporary approaches, such as the design based on neural networks and Gaussian processes regression.
Fil: Amicarelli, Adriana Natacha. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Quintero, Olga. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Di Sciascio, Fernando Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina - Materia
-
BATCH PROCESSES
BIOMASS ESTIMATION
BIOPROCESS MODEL
GAUSSIAN PROCESS
STATE OBSERVERS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/86257
Ver los metadatos del registro completo
id |
CONICETDig_4877d066a60780889c896e9c15122763 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/86257 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Behavior comparison for biomass observers in batch processesAmicarelli, Adriana NatachaQuintero, OlgaDi Sciascio, Fernando AgustínBATCH PROCESSESBIOMASS ESTIMATIONBIOPROCESS MODELGAUSSIAN PROCESSSTATE OBSERVERShttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2On-line estimation of biomass concentration in batch biotechnological processes is an active area of research because normally, the biomass is the desired process product output, and also because it is necessary for control purposes to replace the unavailable biomass concentration measurements with reliable and robust on-line estimations. This work presents five different alternatives to face the problem of biomass estimation in a particular batch bioprocess (δ-endotoxins production of Bacillus thuringiensis), namely: a phenomenological estimator based on dissolved oxygen balance, an extended Kalman filter estimator, a Gaussian process regression-based estimator, an artificial neural networks-based estimator, and finally, an estimator based on information fusion by a decentralized Kalman filter. Each proposed biomass estimation method has its own advantages and drawbacks according to their ability to take into account the model uncertainties and the measurement errors. First, the design techniques of these five biomass estimators are exposed, and finally, the behavior of each estimation method is compared. The availability of efficient biomass estimators is of great importance for engineers because, on the one hand, it allows developing new control strategies for other bioprocess variables such as for instance: the growth rate of the microorganism, the dissolved oxygen concentration, and so on. On the other hand, it is also important to improve the performance of the bioprocess optimization procedure. This work also aims to show the evolution on biomass estimation techniques from classical to more contemporary approaches, such as the design based on neural networks and Gaussian processes regression.Fil: Amicarelli, Adriana Natacha. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Quintero, Olga. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Di Sciascio, Fernando Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaJohn Wiley & Sons Inc2014-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/86257Amicarelli, Adriana Natacha; Quintero, Olga; Di Sciascio, Fernando Agustín; Behavior comparison for biomass observers in batch processes; John Wiley & Sons Inc; Asia-Pacific Journal of Chemical Engineering; 9; 1; 1-2014; 81-921932-2143CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1002/apj.1748info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/apj.1748info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T10:45:23Zoai:ri.conicet.gov.ar:11336/86257instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 10:45:23.627CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Behavior comparison for biomass observers in batch processes |
title |
Behavior comparison for biomass observers in batch processes |
spellingShingle |
Behavior comparison for biomass observers in batch processes Amicarelli, Adriana Natacha BATCH PROCESSES BIOMASS ESTIMATION BIOPROCESS MODEL GAUSSIAN PROCESS STATE OBSERVERS |
title_short |
Behavior comparison for biomass observers in batch processes |
title_full |
Behavior comparison for biomass observers in batch processes |
title_fullStr |
Behavior comparison for biomass observers in batch processes |
title_full_unstemmed |
Behavior comparison for biomass observers in batch processes |
title_sort |
Behavior comparison for biomass observers in batch processes |
dc.creator.none.fl_str_mv |
Amicarelli, Adriana Natacha Quintero, Olga Di Sciascio, Fernando Agustín |
author |
Amicarelli, Adriana Natacha |
author_facet |
Amicarelli, Adriana Natacha Quintero, Olga Di Sciascio, Fernando Agustín |
author_role |
author |
author2 |
Quintero, Olga Di Sciascio, Fernando Agustín |
author2_role |
author author |
dc.subject.none.fl_str_mv |
BATCH PROCESSES BIOMASS ESTIMATION BIOPROCESS MODEL GAUSSIAN PROCESS STATE OBSERVERS |
topic |
BATCH PROCESSES BIOMASS ESTIMATION BIOPROCESS MODEL GAUSSIAN PROCESS STATE OBSERVERS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
On-line estimation of biomass concentration in batch biotechnological processes is an active area of research because normally, the biomass is the desired process product output, and also because it is necessary for control purposes to replace the unavailable biomass concentration measurements with reliable and robust on-line estimations. This work presents five different alternatives to face the problem of biomass estimation in a particular batch bioprocess (δ-endotoxins production of Bacillus thuringiensis), namely: a phenomenological estimator based on dissolved oxygen balance, an extended Kalman filter estimator, a Gaussian process regression-based estimator, an artificial neural networks-based estimator, and finally, an estimator based on information fusion by a decentralized Kalman filter. Each proposed biomass estimation method has its own advantages and drawbacks according to their ability to take into account the model uncertainties and the measurement errors. First, the design techniques of these five biomass estimators are exposed, and finally, the behavior of each estimation method is compared. The availability of efficient biomass estimators is of great importance for engineers because, on the one hand, it allows developing new control strategies for other bioprocess variables such as for instance: the growth rate of the microorganism, the dissolved oxygen concentration, and so on. On the other hand, it is also important to improve the performance of the bioprocess optimization procedure. This work also aims to show the evolution on biomass estimation techniques from classical to more contemporary approaches, such as the design based on neural networks and Gaussian processes regression. Fil: Amicarelli, Adriana Natacha. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina Fil: Quintero, Olga. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina Fil: Di Sciascio, Fernando Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina |
description |
On-line estimation of biomass concentration in batch biotechnological processes is an active area of research because normally, the biomass is the desired process product output, and also because it is necessary for control purposes to replace the unavailable biomass concentration measurements with reliable and robust on-line estimations. This work presents five different alternatives to face the problem of biomass estimation in a particular batch bioprocess (δ-endotoxins production of Bacillus thuringiensis), namely: a phenomenological estimator based on dissolved oxygen balance, an extended Kalman filter estimator, a Gaussian process regression-based estimator, an artificial neural networks-based estimator, and finally, an estimator based on information fusion by a decentralized Kalman filter. Each proposed biomass estimation method has its own advantages and drawbacks according to their ability to take into account the model uncertainties and the measurement errors. First, the design techniques of these five biomass estimators are exposed, and finally, the behavior of each estimation method is compared. The availability of efficient biomass estimators is of great importance for engineers because, on the one hand, it allows developing new control strategies for other bioprocess variables such as for instance: the growth rate of the microorganism, the dissolved oxygen concentration, and so on. On the other hand, it is also important to improve the performance of the bioprocess optimization procedure. This work also aims to show the evolution on biomass estimation techniques from classical to more contemporary approaches, such as the design based on neural networks and Gaussian processes regression. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/86257 Amicarelli, Adriana Natacha; Quintero, Olga; Di Sciascio, Fernando Agustín; Behavior comparison for biomass observers in batch processes; John Wiley & Sons Inc; Asia-Pacific Journal of Chemical Engineering; 9; 1; 1-2014; 81-92 1932-2143 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/86257 |
identifier_str_mv |
Amicarelli, Adriana Natacha; Quintero, Olga; Di Sciascio, Fernando Agustín; Behavior comparison for biomass observers in batch processes; John Wiley & Sons Inc; Asia-Pacific Journal of Chemical Engineering; 9; 1; 1-2014; 81-92 1932-2143 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1002/apj.1748 info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/apj.1748 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
John Wiley & Sons Inc |
publisher.none.fl_str_mv |
John Wiley & Sons Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1843606001172873216 |
score |
13.001348 |