State estimation and trajectory tracking control for a nonlinear and multivariable bioethanol production system
- Autores
- Fernández, Maria Cecilia; Pantano, Maria Nadia; Rossomando, Francisco Guido; Ortiz, Oscar Alberto; Scaglia, Gustavo Juan Eduardo
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper a controller is proposed based on linear algebra for a fed-batch bioethanol production process. It involves fnding feed rate profles (control actions obtained as a solution of a linear equations system) in order to make the system follow predefned concentration profles. A neural network states estimation is designed in order to know those variables that cannot be measured. The controller is tuned using a Monte Carlo experiment for which a cost function that penalizes tracking errors is defned. Moreover, several tests (adding parametric uncertainty and perturbations in the control action) are carried out so as to evaluate the controller performance. A comparison with another controller is made. The demonstration of the error convergence, as well as the stability analysis of the neural network, are included.
Fil: Fernández, Maria Cecilia. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina
Fil: Pantano, Maria Nadia. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Rossomando, Francisco Guido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Ortiz, Oscar Alberto. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina
Fil: Scaglia, Gustavo Juan Eduardo. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
FED-BATCH BIOPROCESS
NONLINEAR AND MULTIVARIABLE SYSTEM
NUMERICAL METHODS/LINEAR ALGEBRA
PROFLES TRACKING CONTROL
STATE ESTIMATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/124802
Ver los metadatos del registro completo
id |
CONICETDig_d19dc4a4750f85d3f5de7beda4f21028 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/124802 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
State estimation and trajectory tracking control for a nonlinear and multivariable bioethanol production systemFernández, Maria CeciliaPantano, Maria NadiaRossomando, Francisco GuidoOrtiz, Oscar AlbertoScaglia, Gustavo Juan EduardoFED-BATCH BIOPROCESSNONLINEAR AND MULTIVARIABLE SYSTEMNUMERICAL METHODS/LINEAR ALGEBRAPROFLES TRACKING CONTROLSTATE ESTIMATIONhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2In this paper a controller is proposed based on linear algebra for a fed-batch bioethanol production process. It involves fnding feed rate profles (control actions obtained as a solution of a linear equations system) in order to make the system follow predefned concentration profles. A neural network states estimation is designed in order to know those variables that cannot be measured. The controller is tuned using a Monte Carlo experiment for which a cost function that penalizes tracking errors is defned. Moreover, several tests (adding parametric uncertainty and perturbations in the control action) are carried out so as to evaluate the controller performance. A comparison with another controller is made. The demonstration of the error convergence, as well as the stability analysis of the neural network, are included.Fil: Fernández, Maria Cecilia. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; ArgentinaFil: Pantano, Maria Nadia. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rossomando, Francisco Guido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Ortiz, Oscar Alberto. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; ArgentinaFil: Scaglia, Gustavo Juan Eduardo. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaBrazilian Society of Chemical Engineering2019-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/124802Fernández, Maria Cecilia; Pantano, Maria Nadia; Rossomando, Francisco Guido; Ortiz, Oscar Alberto; Scaglia, Gustavo Juan Eduardo; State estimation and trajectory tracking control for a nonlinear and multivariable bioethanol production system; Brazilian Society of Chemical Engineering; Brazilian Journal of Chemical Engineering; 36; 1; 3-2019; 421-4370104-66321678-4383CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1590/0104-6632.20190361s20170379info:eu-repo/semantics/altIdentifier/url/https://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322019000100421&tlng=eninfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:47:33Zoai:ri.conicet.gov.ar:11336/124802instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:47:34.205CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
State estimation and trajectory tracking control for a nonlinear and multivariable bioethanol production system |
title |
State estimation and trajectory tracking control for a nonlinear and multivariable bioethanol production system |
spellingShingle |
State estimation and trajectory tracking control for a nonlinear and multivariable bioethanol production system Fernández, Maria Cecilia FED-BATCH BIOPROCESS NONLINEAR AND MULTIVARIABLE SYSTEM NUMERICAL METHODS/LINEAR ALGEBRA PROFLES TRACKING CONTROL STATE ESTIMATION |
title_short |
State estimation and trajectory tracking control for a nonlinear and multivariable bioethanol production system |
title_full |
State estimation and trajectory tracking control for a nonlinear and multivariable bioethanol production system |
title_fullStr |
State estimation and trajectory tracking control for a nonlinear and multivariable bioethanol production system |
title_full_unstemmed |
State estimation and trajectory tracking control for a nonlinear and multivariable bioethanol production system |
title_sort |
State estimation and trajectory tracking control for a nonlinear and multivariable bioethanol production system |
dc.creator.none.fl_str_mv |
Fernández, Maria Cecilia Pantano, Maria Nadia Rossomando, Francisco Guido Ortiz, Oscar Alberto Scaglia, Gustavo Juan Eduardo |
author |
Fernández, Maria Cecilia |
author_facet |
Fernández, Maria Cecilia Pantano, Maria Nadia Rossomando, Francisco Guido Ortiz, Oscar Alberto Scaglia, Gustavo Juan Eduardo |
author_role |
author |
author2 |
Pantano, Maria Nadia Rossomando, Francisco Guido Ortiz, Oscar Alberto Scaglia, Gustavo Juan Eduardo |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
FED-BATCH BIOPROCESS NONLINEAR AND MULTIVARIABLE SYSTEM NUMERICAL METHODS/LINEAR ALGEBRA PROFLES TRACKING CONTROL STATE ESTIMATION |
topic |
FED-BATCH BIOPROCESS NONLINEAR AND MULTIVARIABLE SYSTEM NUMERICAL METHODS/LINEAR ALGEBRA PROFLES TRACKING CONTROL STATE ESTIMATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
In this paper a controller is proposed based on linear algebra for a fed-batch bioethanol production process. It involves fnding feed rate profles (control actions obtained as a solution of a linear equations system) in order to make the system follow predefned concentration profles. A neural network states estimation is designed in order to know those variables that cannot be measured. The controller is tuned using a Monte Carlo experiment for which a cost function that penalizes tracking errors is defned. Moreover, several tests (adding parametric uncertainty and perturbations in the control action) are carried out so as to evaluate the controller performance. A comparison with another controller is made. The demonstration of the error convergence, as well as the stability analysis of the neural network, are included. Fil: Fernández, Maria Cecilia. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina Fil: Pantano, Maria Nadia. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Rossomando, Francisco Guido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina Fil: Ortiz, Oscar Alberto. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina Fil: Scaglia, Gustavo Juan Eduardo. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
In this paper a controller is proposed based on linear algebra for a fed-batch bioethanol production process. It involves fnding feed rate profles (control actions obtained as a solution of a linear equations system) in order to make the system follow predefned concentration profles. A neural network states estimation is designed in order to know those variables that cannot be measured. The controller is tuned using a Monte Carlo experiment for which a cost function that penalizes tracking errors is defned. Moreover, several tests (adding parametric uncertainty and perturbations in the control action) are carried out so as to evaluate the controller performance. A comparison with another controller is made. The demonstration of the error convergence, as well as the stability analysis of the neural network, are included. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/124802 Fernández, Maria Cecilia; Pantano, Maria Nadia; Rossomando, Francisco Guido; Ortiz, Oscar Alberto; Scaglia, Gustavo Juan Eduardo; State estimation and trajectory tracking control for a nonlinear and multivariable bioethanol production system; Brazilian Society of Chemical Engineering; Brazilian Journal of Chemical Engineering; 36; 1; 3-2019; 421-437 0104-6632 1678-4383 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/124802 |
identifier_str_mv |
Fernández, Maria Cecilia; Pantano, Maria Nadia; Rossomando, Francisco Guido; Ortiz, Oscar Alberto; Scaglia, Gustavo Juan Eduardo; State estimation and trajectory tracking control for a nonlinear and multivariable bioethanol production system; Brazilian Society of Chemical Engineering; Brazilian Journal of Chemical Engineering; 36; 1; 3-2019; 421-437 0104-6632 1678-4383 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1590/0104-6632.20190361s20170379 info:eu-repo/semantics/altIdentifier/url/https://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322019000100421&tlng=en |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Brazilian Society of Chemical Engineering |
publisher.none.fl_str_mv |
Brazilian Society of Chemical Engineering |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614519567941632 |
score |
13.070432 |