Beyond Landau-Pollak and entropic inequalities: Geometric bounds imposed on uncertainties sums
- Autores
- Zozor, Steeve; Bosyk, Gustavo Martin; Portesi, Mariela Adelina; Osán, Tristán Martín; Lamberti, Pedro Walter
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we propose generalized inequalities to quantify the uncertainty principle. We deal with two observables with finite discrete spectra described by positive operator-valued measures (POVM) and with systems in mixed states. Denoting by p(A;ρ) and p(B;ρ) the probability vectors associated with observables A and B when the system is in the state ρ, we focus on relations of the form U_α(p(A;ρ))+U_β (p(B;ρ)) ≥ B_{α,β} (A,B) where U_λ is a measure of uncertainty and B is a non-trivial state-independent bound for the uncertainty sum. We propose here: (i) an extension of the usual Landau?Pollak inequality for uncertainty measures of the form U_f (p(A;ρ)) = f(max_i p_i(A;ρ)) issued from well suited metrics; our generalization comes out as a consequence of the triangle inequality. The original Landau?Pollak inequality initially proved for nondegenerate observables and pure states, appears to be the most restrictive one in terms of the maximal probabilities; (ii) an entropic formulation for which the uncertainty measure is based on generalized entropies of Rényi or Havrda?Charvát?Tsallis type: U_{g,α}(p(A;ρ)) = g(Σ_i[p_i(A;ρ)]^α)/(1−α). Our approach is based on Schur-concavity considerations and on previously derived Landau?Pollak type inequalities.
Fil: Zozor, Steeve. Université Grenoble Alpes; Francia. Grenoble Images Parole Signal Automatique; Francia
Fil: Bosyk, Gustavo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Portesi, Mariela Adelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Osán, Tristán Martín. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Fil: Lamberti, Pedro Walter. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina - Materia
-
GENERALIZED UNCERTAINTY RELATIONS
LANDAU-POLLAK TYPE INEQUALITIES
ENTROPIC UNCERTAINTY RELATION
PURE AND MIXED STATES
POVM - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/101955
Ver los metadatos del registro completo
id |
CONICETDig_e38488e9973b1fa54c1726ebdbe7c8b4 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/101955 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Beyond Landau-Pollak and entropic inequalities: Geometric bounds imposed on uncertainties sumsZozor, SteeveBosyk, Gustavo MartinPortesi, Mariela AdelinaOsán, Tristán MartínLamberti, Pedro WalterGENERALIZED UNCERTAINTY RELATIONSLANDAU-POLLAK TYPE INEQUALITIESENTROPIC UNCERTAINTY RELATIONPURE AND MIXED STATESPOVMhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In this paper we propose generalized inequalities to quantify the uncertainty principle. We deal with two observables with finite discrete spectra described by positive operator-valued measures (POVM) and with systems in mixed states. Denoting by p(A;ρ) and p(B;ρ) the probability vectors associated with observables A and B when the system is in the state ρ, we focus on relations of the form U_α(p(A;ρ))+U_β (p(B;ρ)) ≥ B_{α,β} (A,B) where U_λ is a measure of uncertainty and B is a non-trivial state-independent bound for the uncertainty sum. We propose here: (i) an extension of the usual Landau?Pollak inequality for uncertainty measures of the form U_f (p(A;ρ)) = f(max_i p_i(A;ρ)) issued from well suited metrics; our generalization comes out as a consequence of the triangle inequality. The original Landau?Pollak inequality initially proved for nondegenerate observables and pure states, appears to be the most restrictive one in terms of the maximal probabilities; (ii) an entropic formulation for which the uncertainty measure is based on generalized entropies of Rényi or Havrda?Charvát?Tsallis type: U_{g,α}(p(A;ρ)) = g(Σ_i[p_i(A;ρ)]^α)/(1−α). Our approach is based on Schur-concavity considerations and on previously derived Landau?Pollak type inequalities.Fil: Zozor, Steeve. Université Grenoble Alpes; Francia. Grenoble Images Parole Signal Automatique; FranciaFil: Bosyk, Gustavo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Portesi, Mariela Adelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Osán, Tristán Martín. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Lamberti, Pedro Walter. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaAmerican Physical Society2015-02-17info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/101955Zozor, Steeve; Bosyk, Gustavo Martin; Portesi, Mariela Adelina; Osán, Tristán Martín; Lamberti, Pedro Walter; Beyond Landau-Pollak and entropic inequalities: Geometric bounds imposed on uncertainties sums; American Physical Society; AIP Conference Proceedings; 1641; 1; 17-2-2015; 181-1880094-243X1551-7616CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4905977info:eu-repo/semantics/altIdentifier/doi/10.1063/1.4905977info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:15:52Zoai:ri.conicet.gov.ar:11336/101955instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:15:52.283CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Beyond Landau-Pollak and entropic inequalities: Geometric bounds imposed on uncertainties sums |
title |
Beyond Landau-Pollak and entropic inequalities: Geometric bounds imposed on uncertainties sums |
spellingShingle |
Beyond Landau-Pollak and entropic inequalities: Geometric bounds imposed on uncertainties sums Zozor, Steeve GENERALIZED UNCERTAINTY RELATIONS LANDAU-POLLAK TYPE INEQUALITIES ENTROPIC UNCERTAINTY RELATION PURE AND MIXED STATES POVM |
title_short |
Beyond Landau-Pollak and entropic inequalities: Geometric bounds imposed on uncertainties sums |
title_full |
Beyond Landau-Pollak and entropic inequalities: Geometric bounds imposed on uncertainties sums |
title_fullStr |
Beyond Landau-Pollak and entropic inequalities: Geometric bounds imposed on uncertainties sums |
title_full_unstemmed |
Beyond Landau-Pollak and entropic inequalities: Geometric bounds imposed on uncertainties sums |
title_sort |
Beyond Landau-Pollak and entropic inequalities: Geometric bounds imposed on uncertainties sums |
dc.creator.none.fl_str_mv |
Zozor, Steeve Bosyk, Gustavo Martin Portesi, Mariela Adelina Osán, Tristán Martín Lamberti, Pedro Walter |
author |
Zozor, Steeve |
author_facet |
Zozor, Steeve Bosyk, Gustavo Martin Portesi, Mariela Adelina Osán, Tristán Martín Lamberti, Pedro Walter |
author_role |
author |
author2 |
Bosyk, Gustavo Martin Portesi, Mariela Adelina Osán, Tristán Martín Lamberti, Pedro Walter |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
GENERALIZED UNCERTAINTY RELATIONS LANDAU-POLLAK TYPE INEQUALITIES ENTROPIC UNCERTAINTY RELATION PURE AND MIXED STATES POVM |
topic |
GENERALIZED UNCERTAINTY RELATIONS LANDAU-POLLAK TYPE INEQUALITIES ENTROPIC UNCERTAINTY RELATION PURE AND MIXED STATES POVM |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper we propose generalized inequalities to quantify the uncertainty principle. We deal with two observables with finite discrete spectra described by positive operator-valued measures (POVM) and with systems in mixed states. Denoting by p(A;ρ) and p(B;ρ) the probability vectors associated with observables A and B when the system is in the state ρ, we focus on relations of the form U_α(p(A;ρ))+U_β (p(B;ρ)) ≥ B_{α,β} (A,B) where U_λ is a measure of uncertainty and B is a non-trivial state-independent bound for the uncertainty sum. We propose here: (i) an extension of the usual Landau?Pollak inequality for uncertainty measures of the form U_f (p(A;ρ)) = f(max_i p_i(A;ρ)) issued from well suited metrics; our generalization comes out as a consequence of the triangle inequality. The original Landau?Pollak inequality initially proved for nondegenerate observables and pure states, appears to be the most restrictive one in terms of the maximal probabilities; (ii) an entropic formulation for which the uncertainty measure is based on generalized entropies of Rényi or Havrda?Charvát?Tsallis type: U_{g,α}(p(A;ρ)) = g(Σ_i[p_i(A;ρ)]^α)/(1−α). Our approach is based on Schur-concavity considerations and on previously derived Landau?Pollak type inequalities. Fil: Zozor, Steeve. Université Grenoble Alpes; Francia. Grenoble Images Parole Signal Automatique; Francia Fil: Bosyk, Gustavo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina Fil: Portesi, Mariela Adelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina Fil: Osán, Tristán Martín. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina Fil: Lamberti, Pedro Walter. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina |
description |
In this paper we propose generalized inequalities to quantify the uncertainty principle. We deal with two observables with finite discrete spectra described by positive operator-valued measures (POVM) and with systems in mixed states. Denoting by p(A;ρ) and p(B;ρ) the probability vectors associated with observables A and B when the system is in the state ρ, we focus on relations of the form U_α(p(A;ρ))+U_β (p(B;ρ)) ≥ B_{α,β} (A,B) where U_λ is a measure of uncertainty and B is a non-trivial state-independent bound for the uncertainty sum. We propose here: (i) an extension of the usual Landau?Pollak inequality for uncertainty measures of the form U_f (p(A;ρ)) = f(max_i p_i(A;ρ)) issued from well suited metrics; our generalization comes out as a consequence of the triangle inequality. The original Landau?Pollak inequality initially proved for nondegenerate observables and pure states, appears to be the most restrictive one in terms of the maximal probabilities; (ii) an entropic formulation for which the uncertainty measure is based on generalized entropies of Rényi or Havrda?Charvát?Tsallis type: U_{g,α}(p(A;ρ)) = g(Σ_i[p_i(A;ρ)]^α)/(1−α). Our approach is based on Schur-concavity considerations and on previously derived Landau?Pollak type inequalities. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-02-17 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/101955 Zozor, Steeve; Bosyk, Gustavo Martin; Portesi, Mariela Adelina; Osán, Tristán Martín; Lamberti, Pedro Walter; Beyond Landau-Pollak and entropic inequalities: Geometric bounds imposed on uncertainties sums; American Physical Society; AIP Conference Proceedings; 1641; 1; 17-2-2015; 181-188 0094-243X 1551-7616 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/101955 |
identifier_str_mv |
Zozor, Steeve; Bosyk, Gustavo Martin; Portesi, Mariela Adelina; Osán, Tristán Martín; Lamberti, Pedro Walter; Beyond Landau-Pollak and entropic inequalities: Geometric bounds imposed on uncertainties sums; American Physical Society; AIP Conference Proceedings; 1641; 1; 17-2-2015; 181-188 0094-243X 1551-7616 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4905977 info:eu-repo/semantics/altIdentifier/doi/10.1063/1.4905977 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980858835763200 |
score |
12.993085 |