Extended Hamilton-Jacobi theory, contact manifolds, and integrability by quadratures
- Autores
- Grillo, Sergio Daniel; Padrón, Edith
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A Hamilton-Jacobi theory for general dynamical systems, defined on fibered phase spaces, has been recently developed. In this paper, we shall apply such a theory to contact Hamiltonian systems, as those appearing in thermodynamics and on geodesic flows in fluid mechanics. We first study the partial and complete solutions of the Hamilton-Jacobi equation related to these systems. Then, we show that, for a given contact system, the knowledge of what we have called a complete pseudo-isotropic solution ensures the integrability by quadratures of its equations of motion. This extends to contact manifolds a recent result obtained in the context of general symplectic and Poisson manifolds.
Fil: Grillo, Sergio Daniel. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Padrón, Edith. Universidad de La Laguna; España - Materia
-
Hamilton-Jacobi
Contact manifolds
Integrable systems - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/126256
Ver los metadatos del registro completo
| id |
CONICETDig_e37e326e18a28ab1744416261c22ae52 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/126256 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Extended Hamilton-Jacobi theory, contact manifolds, and integrability by quadraturesGrillo, Sergio DanielPadrón, EdithHamilton-JacobiContact manifoldsIntegrable systemshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1A Hamilton-Jacobi theory for general dynamical systems, defined on fibered phase spaces, has been recently developed. In this paper, we shall apply such a theory to contact Hamiltonian systems, as those appearing in thermodynamics and on geodesic flows in fluid mechanics. We first study the partial and complete solutions of the Hamilton-Jacobi equation related to these systems. Then, we show that, for a given contact system, the knowledge of what we have called a complete pseudo-isotropic solution ensures the integrability by quadratures of its equations of motion. This extends to contact manifolds a recent result obtained in the context of general symplectic and Poisson manifolds.Fil: Grillo, Sergio Daniel. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Padrón, Edith. Universidad de La Laguna; EspañaAmerican Institute of Physics2020-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/126256Grillo, Sergio Daniel; Padrón, Edith; Extended Hamilton-Jacobi theory, contact manifolds, and integrability by quadratures; American Institute of Physics; Journal of Mathematical Physics; 61; 1; 1-2020; 1-230022-2488CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/10.1063/1.5133153info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1909.11393info:eu-repo/semantics/altIdentifier/doi/10.1063/1.5133153info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:12:15Zoai:ri.conicet.gov.ar:11336/126256instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:12:15.45CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Extended Hamilton-Jacobi theory, contact manifolds, and integrability by quadratures |
| title |
Extended Hamilton-Jacobi theory, contact manifolds, and integrability by quadratures |
| spellingShingle |
Extended Hamilton-Jacobi theory, contact manifolds, and integrability by quadratures Grillo, Sergio Daniel Hamilton-Jacobi Contact manifolds Integrable systems |
| title_short |
Extended Hamilton-Jacobi theory, contact manifolds, and integrability by quadratures |
| title_full |
Extended Hamilton-Jacobi theory, contact manifolds, and integrability by quadratures |
| title_fullStr |
Extended Hamilton-Jacobi theory, contact manifolds, and integrability by quadratures |
| title_full_unstemmed |
Extended Hamilton-Jacobi theory, contact manifolds, and integrability by quadratures |
| title_sort |
Extended Hamilton-Jacobi theory, contact manifolds, and integrability by quadratures |
| dc.creator.none.fl_str_mv |
Grillo, Sergio Daniel Padrón, Edith |
| author |
Grillo, Sergio Daniel |
| author_facet |
Grillo, Sergio Daniel Padrón, Edith |
| author_role |
author |
| author2 |
Padrón, Edith |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Hamilton-Jacobi Contact manifolds Integrable systems |
| topic |
Hamilton-Jacobi Contact manifolds Integrable systems |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
A Hamilton-Jacobi theory for general dynamical systems, defined on fibered phase spaces, has been recently developed. In this paper, we shall apply such a theory to contact Hamiltonian systems, as those appearing in thermodynamics and on geodesic flows in fluid mechanics. We first study the partial and complete solutions of the Hamilton-Jacobi equation related to these systems. Then, we show that, for a given contact system, the knowledge of what we have called a complete pseudo-isotropic solution ensures the integrability by quadratures of its equations of motion. This extends to contact manifolds a recent result obtained in the context of general symplectic and Poisson manifolds. Fil: Grillo, Sergio Daniel. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina Fil: Padrón, Edith. Universidad de La Laguna; España |
| description |
A Hamilton-Jacobi theory for general dynamical systems, defined on fibered phase spaces, has been recently developed. In this paper, we shall apply such a theory to contact Hamiltonian systems, as those appearing in thermodynamics and on geodesic flows in fluid mechanics. We first study the partial and complete solutions of the Hamilton-Jacobi equation related to these systems. Then, we show that, for a given contact system, the knowledge of what we have called a complete pseudo-isotropic solution ensures the integrability by quadratures of its equations of motion. This extends to contact manifolds a recent result obtained in the context of general symplectic and Poisson manifolds. |
| publishDate |
2020 |
| dc.date.none.fl_str_mv |
2020-01 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/126256 Grillo, Sergio Daniel; Padrón, Edith; Extended Hamilton-Jacobi theory, contact manifolds, and integrability by quadratures; American Institute of Physics; Journal of Mathematical Physics; 61; 1; 1-2020; 1-23 0022-2488 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/126256 |
| identifier_str_mv |
Grillo, Sergio Daniel; Padrón, Edith; Extended Hamilton-Jacobi theory, contact manifolds, and integrability by quadratures; American Institute of Physics; Journal of Mathematical Physics; 61; 1; 1-2020; 1-23 0022-2488 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/10.1063/1.5133153 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1909.11393 info:eu-repo/semantics/altIdentifier/doi/10.1063/1.5133153 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
American Institute of Physics |
| publisher.none.fl_str_mv |
American Institute of Physics |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846782517894447104 |
| score |
12.982451 |