On the Geometry of the Hamilton-Jacobi Equation and Generating Functions
- Autores
- Ferraro, Sebastián José; de León, Manuel; Marrero, Juan Carlos; Martin de Diego, David; Vaquero, Miguel
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we develop a geometric version of the Hamilton-Jacobi equation in the Poisson setting. Specifically, we "geometrize" what is usually called a complete solution of the Hamilton-Jacobi equation. We use some well-known results about symplectic groupoids, in particular cotangent groupoids, as a keystone for the construction of our framework. Our methodology follows the ambitious program proposed by Weinstein (In Mechanics day (Waterloo, ON, 1992), volume 7 of fields institute communications, American Mathematical Society, Providence, 1996) in order to develop geometric formulations of the dynamical behavior of Lagrangian and Hamiltonian systems on Lie algebroids and Lie groupoids. This procedure allows us to take symmetries into account, and, as a by-product, we recover results from Channell and Scovel (Phys D 50(1):80-88, 1991), Ge (Indiana Univ. Math. J. 39(3):859-876, 1990), Ge and Marsden (Phys Lett A 133(3):134-139, 1988), but even in these situations our approach is new. A theory of generating functions for the Poisson structures considered here is also developed following the same pattern, solving a longstanding problem of the area: how to obtain a generating function for the identity transformation and the nearby Poisson automorphisms of Poisson manifolds. A direct application of our results gives the construction of a family of Poisson integrators, that is, integrators that conserve the underlying Poisson geometry. These integrators are implemented in the paper in benchmark problems. Some conclusions, current and future directions of research are shown at the end of the paper.
Fil: Ferraro, Sebastián José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: de León, Manuel. Consejo Superior de Investigaciones Científicas; España. Instituto de Ciencias Matemáticas; España
Fil: Marrero, Juan Carlos. Universidad de La Laguna; España
Fil: Martin de Diego, David. Instituto de Ciencias Matemáticas; España. Consejo Superior de Investigaciones Científicas; España
Fil: Vaquero, Miguel. Consejo Superior de Investigaciones Científicas; España. Instituto de Ciencias Matemáticas; España - Materia
-
HAMILTON-JACOBI THEORY
SYMPLECTIC GROUPOIDS
LAGRANGIAN SUBMANIFOLDS
SYMMETRIES
POISSON MANIFOLDS
POISSON INTEGRATORS
GENERATING FUNCTIONS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/43043
Ver los metadatos del registro completo
id |
CONICETDig_111bc20d0137da472cf13287a8c0c8ae |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/43043 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On the Geometry of the Hamilton-Jacobi Equation and Generating FunctionsFerraro, Sebastián Joséde León, ManuelMarrero, Juan CarlosMartin de Diego, DavidVaquero, MiguelHAMILTON-JACOBI THEORYSYMPLECTIC GROUPOIDSLAGRANGIAN SUBMANIFOLDSSYMMETRIESPOISSON MANIFOLDSPOISSON INTEGRATORSGENERATING FUNCTIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we develop a geometric version of the Hamilton-Jacobi equation in the Poisson setting. Specifically, we "geometrize" what is usually called a complete solution of the Hamilton-Jacobi equation. We use some well-known results about symplectic groupoids, in particular cotangent groupoids, as a keystone for the construction of our framework. Our methodology follows the ambitious program proposed by Weinstein (In Mechanics day (Waterloo, ON, 1992), volume 7 of fields institute communications, American Mathematical Society, Providence, 1996) in order to develop geometric formulations of the dynamical behavior of Lagrangian and Hamiltonian systems on Lie algebroids and Lie groupoids. This procedure allows us to take symmetries into account, and, as a by-product, we recover results from Channell and Scovel (Phys D 50(1):80-88, 1991), Ge (Indiana Univ. Math. J. 39(3):859-876, 1990), Ge and Marsden (Phys Lett A 133(3):134-139, 1988), but even in these situations our approach is new. A theory of generating functions for the Poisson structures considered here is also developed following the same pattern, solving a longstanding problem of the area: how to obtain a generating function for the identity transformation and the nearby Poisson automorphisms of Poisson manifolds. A direct application of our results gives the construction of a family of Poisson integrators, that is, integrators that conserve the underlying Poisson geometry. These integrators are implemented in the paper in benchmark problems. Some conclusions, current and future directions of research are shown at the end of the paper.Fil: Ferraro, Sebastián José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaFil: de León, Manuel. Consejo Superior de Investigaciones Científicas; España. Instituto de Ciencias Matemáticas; EspañaFil: Marrero, Juan Carlos. Universidad de La Laguna; EspañaFil: Martin de Diego, David. Instituto de Ciencias Matemáticas; España. Consejo Superior de Investigaciones Científicas; EspañaFil: Vaquero, Miguel. Consejo Superior de Investigaciones Científicas; España. Instituto de Ciencias Matemáticas; EspañaSpringer2017-10-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/43043Ferraro, Sebastián José; de León, Manuel; Marrero, Juan Carlos; Martin de Diego, David; Vaquero, Miguel; On the Geometry of the Hamilton-Jacobi Equation and Generating Functions; Springer; Archive For Rational Mechanics And Analysis; 226; 1; 9-10-2017; 243-3020003-9527CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00205-017-1133-0info:eu-repo/semantics/altIdentifier/doi/10.1007/s00205-017-1133-0info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1606.00847info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:47:45Zoai:ri.conicet.gov.ar:11336/43043instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:47:45.367CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On the Geometry of the Hamilton-Jacobi Equation and Generating Functions |
title |
On the Geometry of the Hamilton-Jacobi Equation and Generating Functions |
spellingShingle |
On the Geometry of the Hamilton-Jacobi Equation and Generating Functions Ferraro, Sebastián José HAMILTON-JACOBI THEORY SYMPLECTIC GROUPOIDS LAGRANGIAN SUBMANIFOLDS SYMMETRIES POISSON MANIFOLDS POISSON INTEGRATORS GENERATING FUNCTIONS |
title_short |
On the Geometry of the Hamilton-Jacobi Equation and Generating Functions |
title_full |
On the Geometry of the Hamilton-Jacobi Equation and Generating Functions |
title_fullStr |
On the Geometry of the Hamilton-Jacobi Equation and Generating Functions |
title_full_unstemmed |
On the Geometry of the Hamilton-Jacobi Equation and Generating Functions |
title_sort |
On the Geometry of the Hamilton-Jacobi Equation and Generating Functions |
dc.creator.none.fl_str_mv |
Ferraro, Sebastián José de León, Manuel Marrero, Juan Carlos Martin de Diego, David Vaquero, Miguel |
author |
Ferraro, Sebastián José |
author_facet |
Ferraro, Sebastián José de León, Manuel Marrero, Juan Carlos Martin de Diego, David Vaquero, Miguel |
author_role |
author |
author2 |
de León, Manuel Marrero, Juan Carlos Martin de Diego, David Vaquero, Miguel |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
HAMILTON-JACOBI THEORY SYMPLECTIC GROUPOIDS LAGRANGIAN SUBMANIFOLDS SYMMETRIES POISSON MANIFOLDS POISSON INTEGRATORS GENERATING FUNCTIONS |
topic |
HAMILTON-JACOBI THEORY SYMPLECTIC GROUPOIDS LAGRANGIAN SUBMANIFOLDS SYMMETRIES POISSON MANIFOLDS POISSON INTEGRATORS GENERATING FUNCTIONS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper we develop a geometric version of the Hamilton-Jacobi equation in the Poisson setting. Specifically, we "geometrize" what is usually called a complete solution of the Hamilton-Jacobi equation. We use some well-known results about symplectic groupoids, in particular cotangent groupoids, as a keystone for the construction of our framework. Our methodology follows the ambitious program proposed by Weinstein (In Mechanics day (Waterloo, ON, 1992), volume 7 of fields institute communications, American Mathematical Society, Providence, 1996) in order to develop geometric formulations of the dynamical behavior of Lagrangian and Hamiltonian systems on Lie algebroids and Lie groupoids. This procedure allows us to take symmetries into account, and, as a by-product, we recover results from Channell and Scovel (Phys D 50(1):80-88, 1991), Ge (Indiana Univ. Math. J. 39(3):859-876, 1990), Ge and Marsden (Phys Lett A 133(3):134-139, 1988), but even in these situations our approach is new. A theory of generating functions for the Poisson structures considered here is also developed following the same pattern, solving a longstanding problem of the area: how to obtain a generating function for the identity transformation and the nearby Poisson automorphisms of Poisson manifolds. A direct application of our results gives the construction of a family of Poisson integrators, that is, integrators that conserve the underlying Poisson geometry. These integrators are implemented in the paper in benchmark problems. Some conclusions, current and future directions of research are shown at the end of the paper. Fil: Ferraro, Sebastián José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina Fil: de León, Manuel. Consejo Superior de Investigaciones Científicas; España. Instituto de Ciencias Matemáticas; España Fil: Marrero, Juan Carlos. Universidad de La Laguna; España Fil: Martin de Diego, David. Instituto de Ciencias Matemáticas; España. Consejo Superior de Investigaciones Científicas; España Fil: Vaquero, Miguel. Consejo Superior de Investigaciones Científicas; España. Instituto de Ciencias Matemáticas; España |
description |
In this paper we develop a geometric version of the Hamilton-Jacobi equation in the Poisson setting. Specifically, we "geometrize" what is usually called a complete solution of the Hamilton-Jacobi equation. We use some well-known results about symplectic groupoids, in particular cotangent groupoids, as a keystone for the construction of our framework. Our methodology follows the ambitious program proposed by Weinstein (In Mechanics day (Waterloo, ON, 1992), volume 7 of fields institute communications, American Mathematical Society, Providence, 1996) in order to develop geometric formulations of the dynamical behavior of Lagrangian and Hamiltonian systems on Lie algebroids and Lie groupoids. This procedure allows us to take symmetries into account, and, as a by-product, we recover results from Channell and Scovel (Phys D 50(1):80-88, 1991), Ge (Indiana Univ. Math. J. 39(3):859-876, 1990), Ge and Marsden (Phys Lett A 133(3):134-139, 1988), but even in these situations our approach is new. A theory of generating functions for the Poisson structures considered here is also developed following the same pattern, solving a longstanding problem of the area: how to obtain a generating function for the identity transformation and the nearby Poisson automorphisms of Poisson manifolds. A direct application of our results gives the construction of a family of Poisson integrators, that is, integrators that conserve the underlying Poisson geometry. These integrators are implemented in the paper in benchmark problems. Some conclusions, current and future directions of research are shown at the end of the paper. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-10-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/43043 Ferraro, Sebastián José; de León, Manuel; Marrero, Juan Carlos; Martin de Diego, David; Vaquero, Miguel; On the Geometry of the Hamilton-Jacobi Equation and Generating Functions; Springer; Archive For Rational Mechanics And Analysis; 226; 1; 9-10-2017; 243-302 0003-9527 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/43043 |
identifier_str_mv |
Ferraro, Sebastián José; de León, Manuel; Marrero, Juan Carlos; Martin de Diego, David; Vaquero, Miguel; On the Geometry of the Hamilton-Jacobi Equation and Generating Functions; Springer; Archive For Rational Mechanics And Analysis; 226; 1; 9-10-2017; 243-302 0003-9527 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00205-017-1133-0 info:eu-repo/semantics/altIdentifier/doi/10.1007/s00205-017-1133-0 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1606.00847 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614521989103616 |
score |
13.070432 |