Holographic Wilson loops, Hamilton-Jacobi equation, and regularizations

Autores
Pontello, Diego Esteban; Trinchero, Roberto Carlos
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The minimal area for surfaces whose borders are rectangular and circular loops are calculated using the Hamilton-Jacobi (HJ) equation. This amounts to solving the HJ equation for the value of the minimal area, without calculating the shape of the corresponding surface. This is done for bulk geometries that are asymptotically anti-de Sitter (AdS). For the rectangular contour, the HJ equation, which is separable, can be solved exactly. For the circular contour an expansion in powers of the radius is implemented. The HJ approach naturally leads to a regularization which consists in locating the contour away from the border. The results are compared with the ϵ-regularization which leaves the contour at the border and calculates the area of the corresponding minimal surface up to a diameter smaller than the one of the contour at the border. The results for the circular loop do not coincide if the expansion parameter is taken to be the radius of the contour at the border. It is shown that using this expansion parameter the ϵ-regularization leads to incorrect results for certain solvable non-AdS cases. However, if the expansion parameter is taken to be the radius of the minimal surface whose area is computed, then the results coincide with the HJ scheme. This is traced back to the fact that in the HJ case the expansion parameter for the area of a minimal surface is intrinsic to the surface; however, the radius of the contour at the border is related to the way one chooses to regularize in the ϵ-scheme the calculation of this area.
Fil: Pontello, Diego Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Trinchero, Roberto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Materia
Holographic Wilson Loops
Hamilton Jacobi
Regularizations
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/60220

id CONICETDig_81c2e36edd38977d42fdb15acd0df73d
oai_identifier_str oai:ri.conicet.gov.ar:11336/60220
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Holographic Wilson loops, Hamilton-Jacobi equation, and regularizationsPontello, Diego EstebanTrinchero, Roberto CarlosHolographic Wilson LoopsHamilton JacobiRegularizationshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The minimal area for surfaces whose borders are rectangular and circular loops are calculated using the Hamilton-Jacobi (HJ) equation. This amounts to solving the HJ equation for the value of the minimal area, without calculating the shape of the corresponding surface. This is done for bulk geometries that are asymptotically anti-de Sitter (AdS). For the rectangular contour, the HJ equation, which is separable, can be solved exactly. For the circular contour an expansion in powers of the radius is implemented. The HJ approach naturally leads to a regularization which consists in locating the contour away from the border. The results are compared with the ϵ-regularization which leaves the contour at the border and calculates the area of the corresponding minimal surface up to a diameter smaller than the one of the contour at the border. The results for the circular loop do not coincide if the expansion parameter is taken to be the radius of the contour at the border. It is shown that using this expansion parameter the ϵ-regularization leads to incorrect results for certain solvable non-AdS cases. However, if the expansion parameter is taken to be the radius of the minimal surface whose area is computed, then the results coincide with the HJ scheme. This is traced back to the fact that in the HJ case the expansion parameter for the area of a minimal surface is intrinsic to the surface; however, the radius of the contour at the border is related to the way one chooses to regularize in the ϵ-scheme the calculation of this area.Fil: Pontello, Diego Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Trinchero, Roberto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaAmerican Physical Society2016-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/60220Pontello, Diego Esteban; Trinchero, Roberto Carlos; Holographic Wilson loops, Hamilton-Jacobi equation, and regularizations; American Physical Society; Physical Review D; 93; 7; 4-2016; 1-132470-0029CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.93.075007info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prd/abstract/10.1103/PhysRevD.93.075007info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:34:47Zoai:ri.conicet.gov.ar:11336/60220instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:34:47.437CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Holographic Wilson loops, Hamilton-Jacobi equation, and regularizations
title Holographic Wilson loops, Hamilton-Jacobi equation, and regularizations
spellingShingle Holographic Wilson loops, Hamilton-Jacobi equation, and regularizations
Pontello, Diego Esteban
Holographic Wilson Loops
Hamilton Jacobi
Regularizations
title_short Holographic Wilson loops, Hamilton-Jacobi equation, and regularizations
title_full Holographic Wilson loops, Hamilton-Jacobi equation, and regularizations
title_fullStr Holographic Wilson loops, Hamilton-Jacobi equation, and regularizations
title_full_unstemmed Holographic Wilson loops, Hamilton-Jacobi equation, and regularizations
title_sort Holographic Wilson loops, Hamilton-Jacobi equation, and regularizations
dc.creator.none.fl_str_mv Pontello, Diego Esteban
Trinchero, Roberto Carlos
author Pontello, Diego Esteban
author_facet Pontello, Diego Esteban
Trinchero, Roberto Carlos
author_role author
author2 Trinchero, Roberto Carlos
author2_role author
dc.subject.none.fl_str_mv Holographic Wilson Loops
Hamilton Jacobi
Regularizations
topic Holographic Wilson Loops
Hamilton Jacobi
Regularizations
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The minimal area for surfaces whose borders are rectangular and circular loops are calculated using the Hamilton-Jacobi (HJ) equation. This amounts to solving the HJ equation for the value of the minimal area, without calculating the shape of the corresponding surface. This is done for bulk geometries that are asymptotically anti-de Sitter (AdS). For the rectangular contour, the HJ equation, which is separable, can be solved exactly. For the circular contour an expansion in powers of the radius is implemented. The HJ approach naturally leads to a regularization which consists in locating the contour away from the border. The results are compared with the ϵ-regularization which leaves the contour at the border and calculates the area of the corresponding minimal surface up to a diameter smaller than the one of the contour at the border. The results for the circular loop do not coincide if the expansion parameter is taken to be the radius of the contour at the border. It is shown that using this expansion parameter the ϵ-regularization leads to incorrect results for certain solvable non-AdS cases. However, if the expansion parameter is taken to be the radius of the minimal surface whose area is computed, then the results coincide with the HJ scheme. This is traced back to the fact that in the HJ case the expansion parameter for the area of a minimal surface is intrinsic to the surface; however, the radius of the contour at the border is related to the way one chooses to regularize in the ϵ-scheme the calculation of this area.
Fil: Pontello, Diego Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Trinchero, Roberto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
description The minimal area for surfaces whose borders are rectangular and circular loops are calculated using the Hamilton-Jacobi (HJ) equation. This amounts to solving the HJ equation for the value of the minimal area, without calculating the shape of the corresponding surface. This is done for bulk geometries that are asymptotically anti-de Sitter (AdS). For the rectangular contour, the HJ equation, which is separable, can be solved exactly. For the circular contour an expansion in powers of the radius is implemented. The HJ approach naturally leads to a regularization which consists in locating the contour away from the border. The results are compared with the ϵ-regularization which leaves the contour at the border and calculates the area of the corresponding minimal surface up to a diameter smaller than the one of the contour at the border. The results for the circular loop do not coincide if the expansion parameter is taken to be the radius of the contour at the border. It is shown that using this expansion parameter the ϵ-regularization leads to incorrect results for certain solvable non-AdS cases. However, if the expansion parameter is taken to be the radius of the minimal surface whose area is computed, then the results coincide with the HJ scheme. This is traced back to the fact that in the HJ case the expansion parameter for the area of a minimal surface is intrinsic to the surface; however, the radius of the contour at the border is related to the way one chooses to regularize in the ϵ-scheme the calculation of this area.
publishDate 2016
dc.date.none.fl_str_mv 2016-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/60220
Pontello, Diego Esteban; Trinchero, Roberto Carlos; Holographic Wilson loops, Hamilton-Jacobi equation, and regularizations; American Physical Society; Physical Review D; 93; 7; 4-2016; 1-13
2470-0029
CONICET Digital
CONICET
url http://hdl.handle.net/11336/60220
identifier_str_mv Pontello, Diego Esteban; Trinchero, Roberto Carlos; Holographic Wilson loops, Hamilton-Jacobi equation, and regularizations; American Physical Society; Physical Review D; 93; 7; 4-2016; 1-13
2470-0029
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.93.075007
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prd/abstract/10.1103/PhysRevD.93.075007
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614364635594752
score 13.070432