Holographic Wilson loops, Hamilton-Jacobi equation, and regularizations
- Autores
- Pontello, Diego Esteban; Trinchero, Roberto Carlos
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The minimal area for surfaces whose borders are rectangular and circular loops are calculated using the Hamilton-Jacobi (HJ) equation. This amounts to solving the HJ equation for the value of the minimal area, without calculating the shape of the corresponding surface. This is done for bulk geometries that are asymptotically anti-de Sitter (AdS). For the rectangular contour, the HJ equation, which is separable, can be solved exactly. For the circular contour an expansion in powers of the radius is implemented. The HJ approach naturally leads to a regularization which consists in locating the contour away from the border. The results are compared with the ϵ-regularization which leaves the contour at the border and calculates the area of the corresponding minimal surface up to a diameter smaller than the one of the contour at the border. The results for the circular loop do not coincide if the expansion parameter is taken to be the radius of the contour at the border. It is shown that using this expansion parameter the ϵ-regularization leads to incorrect results for certain solvable non-AdS cases. However, if the expansion parameter is taken to be the radius of the minimal surface whose area is computed, then the results coincide with the HJ scheme. This is traced back to the fact that in the HJ case the expansion parameter for the area of a minimal surface is intrinsic to the surface; however, the radius of the contour at the border is related to the way one chooses to regularize in the ϵ-scheme the calculation of this area.
Fil: Pontello, Diego Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Trinchero, Roberto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina - Materia
-
Holographic Wilson Loops
Hamilton Jacobi
Regularizations - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/60220
Ver los metadatos del registro completo
id |
CONICETDig_81c2e36edd38977d42fdb15acd0df73d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/60220 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Holographic Wilson loops, Hamilton-Jacobi equation, and regularizationsPontello, Diego EstebanTrinchero, Roberto CarlosHolographic Wilson LoopsHamilton JacobiRegularizationshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The minimal area for surfaces whose borders are rectangular and circular loops are calculated using the Hamilton-Jacobi (HJ) equation. This amounts to solving the HJ equation for the value of the minimal area, without calculating the shape of the corresponding surface. This is done for bulk geometries that are asymptotically anti-de Sitter (AdS). For the rectangular contour, the HJ equation, which is separable, can be solved exactly. For the circular contour an expansion in powers of the radius is implemented. The HJ approach naturally leads to a regularization which consists in locating the contour away from the border. The results are compared with the ϵ-regularization which leaves the contour at the border and calculates the area of the corresponding minimal surface up to a diameter smaller than the one of the contour at the border. The results for the circular loop do not coincide if the expansion parameter is taken to be the radius of the contour at the border. It is shown that using this expansion parameter the ϵ-regularization leads to incorrect results for certain solvable non-AdS cases. However, if the expansion parameter is taken to be the radius of the minimal surface whose area is computed, then the results coincide with the HJ scheme. This is traced back to the fact that in the HJ case the expansion parameter for the area of a minimal surface is intrinsic to the surface; however, the radius of the contour at the border is related to the way one chooses to regularize in the ϵ-scheme the calculation of this area.Fil: Pontello, Diego Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Trinchero, Roberto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaAmerican Physical Society2016-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/60220Pontello, Diego Esteban; Trinchero, Roberto Carlos; Holographic Wilson loops, Hamilton-Jacobi equation, and regularizations; American Physical Society; Physical Review D; 93; 7; 4-2016; 1-132470-0029CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.93.075007info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prd/abstract/10.1103/PhysRevD.93.075007info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:34:47Zoai:ri.conicet.gov.ar:11336/60220instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:34:47.437CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Holographic Wilson loops, Hamilton-Jacobi equation, and regularizations |
title |
Holographic Wilson loops, Hamilton-Jacobi equation, and regularizations |
spellingShingle |
Holographic Wilson loops, Hamilton-Jacobi equation, and regularizations Pontello, Diego Esteban Holographic Wilson Loops Hamilton Jacobi Regularizations |
title_short |
Holographic Wilson loops, Hamilton-Jacobi equation, and regularizations |
title_full |
Holographic Wilson loops, Hamilton-Jacobi equation, and regularizations |
title_fullStr |
Holographic Wilson loops, Hamilton-Jacobi equation, and regularizations |
title_full_unstemmed |
Holographic Wilson loops, Hamilton-Jacobi equation, and regularizations |
title_sort |
Holographic Wilson loops, Hamilton-Jacobi equation, and regularizations |
dc.creator.none.fl_str_mv |
Pontello, Diego Esteban Trinchero, Roberto Carlos |
author |
Pontello, Diego Esteban |
author_facet |
Pontello, Diego Esteban Trinchero, Roberto Carlos |
author_role |
author |
author2 |
Trinchero, Roberto Carlos |
author2_role |
author |
dc.subject.none.fl_str_mv |
Holographic Wilson Loops Hamilton Jacobi Regularizations |
topic |
Holographic Wilson Loops Hamilton Jacobi Regularizations |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The minimal area for surfaces whose borders are rectangular and circular loops are calculated using the Hamilton-Jacobi (HJ) equation. This amounts to solving the HJ equation for the value of the minimal area, without calculating the shape of the corresponding surface. This is done for bulk geometries that are asymptotically anti-de Sitter (AdS). For the rectangular contour, the HJ equation, which is separable, can be solved exactly. For the circular contour an expansion in powers of the radius is implemented. The HJ approach naturally leads to a regularization which consists in locating the contour away from the border. The results are compared with the ϵ-regularization which leaves the contour at the border and calculates the area of the corresponding minimal surface up to a diameter smaller than the one of the contour at the border. The results for the circular loop do not coincide if the expansion parameter is taken to be the radius of the contour at the border. It is shown that using this expansion parameter the ϵ-regularization leads to incorrect results for certain solvable non-AdS cases. However, if the expansion parameter is taken to be the radius of the minimal surface whose area is computed, then the results coincide with the HJ scheme. This is traced back to the fact that in the HJ case the expansion parameter for the area of a minimal surface is intrinsic to the surface; however, the radius of the contour at the border is related to the way one chooses to regularize in the ϵ-scheme the calculation of this area. Fil: Pontello, Diego Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina Fil: Trinchero, Roberto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina |
description |
The minimal area for surfaces whose borders are rectangular and circular loops are calculated using the Hamilton-Jacobi (HJ) equation. This amounts to solving the HJ equation for the value of the minimal area, without calculating the shape of the corresponding surface. This is done for bulk geometries that are asymptotically anti-de Sitter (AdS). For the rectangular contour, the HJ equation, which is separable, can be solved exactly. For the circular contour an expansion in powers of the radius is implemented. The HJ approach naturally leads to a regularization which consists in locating the contour away from the border. The results are compared with the ϵ-regularization which leaves the contour at the border and calculates the area of the corresponding minimal surface up to a diameter smaller than the one of the contour at the border. The results for the circular loop do not coincide if the expansion parameter is taken to be the radius of the contour at the border. It is shown that using this expansion parameter the ϵ-regularization leads to incorrect results for certain solvable non-AdS cases. However, if the expansion parameter is taken to be the radius of the minimal surface whose area is computed, then the results coincide with the HJ scheme. This is traced back to the fact that in the HJ case the expansion parameter for the area of a minimal surface is intrinsic to the surface; however, the radius of the contour at the border is related to the way one chooses to regularize in the ϵ-scheme the calculation of this area. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/60220 Pontello, Diego Esteban; Trinchero, Roberto Carlos; Holographic Wilson loops, Hamilton-Jacobi equation, and regularizations; American Physical Society; Physical Review D; 93; 7; 4-2016; 1-13 2470-0029 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/60220 |
identifier_str_mv |
Pontello, Diego Esteban; Trinchero, Roberto Carlos; Holographic Wilson loops, Hamilton-Jacobi equation, and regularizations; American Physical Society; Physical Review D; 93; 7; 4-2016; 1-13 2470-0029 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.93.075007 info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prd/abstract/10.1103/PhysRevD.93.075007 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614364635594752 |
score |
13.070432 |