Approximate average head models for EEG source imaging
- Autores
- Valdés Hernández, Pedro A.; Von Ellenrieder, Nicolás; Ojeda Gonzalez, Alejandro; Kochen, Sara Silvia; Alemán Gómez, Yasser; Muravchik, Carlos Horacio; Valdés Sosa, Pedro A.
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We examine the performance of approximate models (AM) of the head in solving the EEG inverse problem. The AM are needed when the individual’s MRI is not available. We simulate the electric potential distribution generated by cortical sources for a large sample of 305 subjects, and solve the inverse problem with AM. Statistical comparisons are carried out with the distribution of the localization errors. We propose several new AM. These are the average of many individual realistic MRI-based models, such as surface-based models or lead fields. We demonstrate that the lead fields of the AM should be calculated considering source moments not constrained to be normal to the cortex. We also show that the imperfect anatomical correspondence between all cortices is the most important cause of localization errors. Our average models perform better than a random individual model or the usual average model in the MNI space. We also show that a classification based on race and gender or head size before averaging does not significantly improve the results. Our average models are slightly better than an existing AM with shape guided by measured individual electrode positions, and have the advantage of not requiring such measurements. Among the studied models, the Average Lead Field seems the most convenient tool in large and systematical clinical and research studies demanding EEG source localization, when MRI are unavailable. This AM does not need a strict alignment between head models, and can therefore be easily achieved for any type of head modeling approach.
Fil: Valdés Hernández, Pedro A.. Centro Cubano de Neurociencias; Cuba
Fil: Von Ellenrieder, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Electrotecnia. Laboratorio de Electrónica Industrial, Control e Instrumentación; Argentina
Fil: Ojeda Gonzalez, Alejandro. Centro Cubano de Neurociencias; Cuba
Fil: Kochen, Sara Silvia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; Argentina
Fil: Alemán Gómez, Yasser. Centro Cubano de Neurociencias; Cuba
Fil: Muravchik, Carlos Horacio. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Electrotecnia. Laboratorio de Electrónica Industrial, Control e Instrumentación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
Fil: Valdés Sosa, Pedro A.. Centro Cubano de Neurociencias; Cuba - Materia
-
APPROXIMATE HEAD MODEL
AVERAGE
BEM
EEG CUBAN BRAIN MAPPING PROJECT
ELECTRODE MEASUREMENT
LEAD FIELD
MNI
SLORETA
THIN PLATE SPLINE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/115109
Ver los metadatos del registro completo
| id |
CONICETDig_e3662bb64422ec0879e25fc7824c7da1 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/115109 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Approximate average head models for EEG source imagingValdés Hernández, Pedro A.Von Ellenrieder, NicolásOjeda Gonzalez, AlejandroKochen, Sara SilviaAlemán Gómez, YasserMuravchik, Carlos HoracioValdés Sosa, Pedro A.APPROXIMATE HEAD MODELAVERAGEBEMEEG CUBAN BRAIN MAPPING PROJECTELECTRODE MEASUREMENTLEAD FIELDMNISLORETATHIN PLATE SPLINEhttps://purl.org/becyt/ford/3.2https://purl.org/becyt/ford/3We examine the performance of approximate models (AM) of the head in solving the EEG inverse problem. The AM are needed when the individual’s MRI is not available. We simulate the electric potential distribution generated by cortical sources for a large sample of 305 subjects, and solve the inverse problem with AM. Statistical comparisons are carried out with the distribution of the localization errors. We propose several new AM. These are the average of many individual realistic MRI-based models, such as surface-based models or lead fields. We demonstrate that the lead fields of the AM should be calculated considering source moments not constrained to be normal to the cortex. We also show that the imperfect anatomical correspondence between all cortices is the most important cause of localization errors. Our average models perform better than a random individual model or the usual average model in the MNI space. We also show that a classification based on race and gender or head size before averaging does not significantly improve the results. Our average models are slightly better than an existing AM with shape guided by measured individual electrode positions, and have the advantage of not requiring such measurements. Among the studied models, the Average Lead Field seems the most convenient tool in large and systematical clinical and research studies demanding EEG source localization, when MRI are unavailable. This AM does not need a strict alignment between head models, and can therefore be easily achieved for any type of head modeling approach.Fil: Valdés Hernández, Pedro A.. Centro Cubano de Neurociencias; CubaFil: Von Ellenrieder, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Electrotecnia. Laboratorio de Electrónica Industrial, Control e Instrumentación; ArgentinaFil: Ojeda Gonzalez, Alejandro. Centro Cubano de Neurociencias; CubaFil: Kochen, Sara Silvia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; ArgentinaFil: Alemán Gómez, Yasser. Centro Cubano de Neurociencias; CubaFil: Muravchik, Carlos Horacio. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Electrotecnia. Laboratorio de Electrónica Industrial, Control e Instrumentación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Valdés Sosa, Pedro A.. Centro Cubano de Neurociencias; CubaElsevier Science2009-12-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/115109Valdés Hernández, Pedro A.; Von Ellenrieder, Nicolás; Ojeda Gonzalez, Alejandro; Kochen, Sara Silvia; Alemán Gómez, Yasser; et al.; Approximate average head models for EEG source imaging; Elsevier Science; Journal of Neuroscience Methods; 185; 1; 15-12-2009; 125-1320165-0270CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S016502700900497X?via%3Dihubinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jneumeth.2009.09.005info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:04:43Zoai:ri.conicet.gov.ar:11336/115109instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:04:43.916CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Approximate average head models for EEG source imaging |
| title |
Approximate average head models for EEG source imaging |
| spellingShingle |
Approximate average head models for EEG source imaging Valdés Hernández, Pedro A. APPROXIMATE HEAD MODEL AVERAGE BEM EEG CUBAN BRAIN MAPPING PROJECT ELECTRODE MEASUREMENT LEAD FIELD MNI SLORETA THIN PLATE SPLINE |
| title_short |
Approximate average head models for EEG source imaging |
| title_full |
Approximate average head models for EEG source imaging |
| title_fullStr |
Approximate average head models for EEG source imaging |
| title_full_unstemmed |
Approximate average head models for EEG source imaging |
| title_sort |
Approximate average head models for EEG source imaging |
| dc.creator.none.fl_str_mv |
Valdés Hernández, Pedro A. Von Ellenrieder, Nicolás Ojeda Gonzalez, Alejandro Kochen, Sara Silvia Alemán Gómez, Yasser Muravchik, Carlos Horacio Valdés Sosa, Pedro A. |
| author |
Valdés Hernández, Pedro A. |
| author_facet |
Valdés Hernández, Pedro A. Von Ellenrieder, Nicolás Ojeda Gonzalez, Alejandro Kochen, Sara Silvia Alemán Gómez, Yasser Muravchik, Carlos Horacio Valdés Sosa, Pedro A. |
| author_role |
author |
| author2 |
Von Ellenrieder, Nicolás Ojeda Gonzalez, Alejandro Kochen, Sara Silvia Alemán Gómez, Yasser Muravchik, Carlos Horacio Valdés Sosa, Pedro A. |
| author2_role |
author author author author author author |
| dc.subject.none.fl_str_mv |
APPROXIMATE HEAD MODEL AVERAGE BEM EEG CUBAN BRAIN MAPPING PROJECT ELECTRODE MEASUREMENT LEAD FIELD MNI SLORETA THIN PLATE SPLINE |
| topic |
APPROXIMATE HEAD MODEL AVERAGE BEM EEG CUBAN BRAIN MAPPING PROJECT ELECTRODE MEASUREMENT LEAD FIELD MNI SLORETA THIN PLATE SPLINE |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/3.2 https://purl.org/becyt/ford/3 |
| dc.description.none.fl_txt_mv |
We examine the performance of approximate models (AM) of the head in solving the EEG inverse problem. The AM are needed when the individual’s MRI is not available. We simulate the electric potential distribution generated by cortical sources for a large sample of 305 subjects, and solve the inverse problem with AM. Statistical comparisons are carried out with the distribution of the localization errors. We propose several new AM. These are the average of many individual realistic MRI-based models, such as surface-based models or lead fields. We demonstrate that the lead fields of the AM should be calculated considering source moments not constrained to be normal to the cortex. We also show that the imperfect anatomical correspondence between all cortices is the most important cause of localization errors. Our average models perform better than a random individual model or the usual average model in the MNI space. We also show that a classification based on race and gender or head size before averaging does not significantly improve the results. Our average models are slightly better than an existing AM with shape guided by measured individual electrode positions, and have the advantage of not requiring such measurements. Among the studied models, the Average Lead Field seems the most convenient tool in large and systematical clinical and research studies demanding EEG source localization, when MRI are unavailable. This AM does not need a strict alignment between head models, and can therefore be easily achieved for any type of head modeling approach. Fil: Valdés Hernández, Pedro A.. Centro Cubano de Neurociencias; Cuba Fil: Von Ellenrieder, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Electrotecnia. Laboratorio de Electrónica Industrial, Control e Instrumentación; Argentina Fil: Ojeda Gonzalez, Alejandro. Centro Cubano de Neurociencias; Cuba Fil: Kochen, Sara Silvia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; Argentina Fil: Alemán Gómez, Yasser. Centro Cubano de Neurociencias; Cuba Fil: Muravchik, Carlos Horacio. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Electrotecnia. Laboratorio de Electrónica Industrial, Control e Instrumentación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina Fil: Valdés Sosa, Pedro A.. Centro Cubano de Neurociencias; Cuba |
| description |
We examine the performance of approximate models (AM) of the head in solving the EEG inverse problem. The AM are needed when the individual’s MRI is not available. We simulate the electric potential distribution generated by cortical sources for a large sample of 305 subjects, and solve the inverse problem with AM. Statistical comparisons are carried out with the distribution of the localization errors. We propose several new AM. These are the average of many individual realistic MRI-based models, such as surface-based models or lead fields. We demonstrate that the lead fields of the AM should be calculated considering source moments not constrained to be normal to the cortex. We also show that the imperfect anatomical correspondence between all cortices is the most important cause of localization errors. Our average models perform better than a random individual model or the usual average model in the MNI space. We also show that a classification based on race and gender or head size before averaging does not significantly improve the results. Our average models are slightly better than an existing AM with shape guided by measured individual electrode positions, and have the advantage of not requiring such measurements. Among the studied models, the Average Lead Field seems the most convenient tool in large and systematical clinical and research studies demanding EEG source localization, when MRI are unavailable. This AM does not need a strict alignment between head models, and can therefore be easily achieved for any type of head modeling approach. |
| publishDate |
2009 |
| dc.date.none.fl_str_mv |
2009-12-15 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/115109 Valdés Hernández, Pedro A.; Von Ellenrieder, Nicolás; Ojeda Gonzalez, Alejandro; Kochen, Sara Silvia; Alemán Gómez, Yasser; et al.; Approximate average head models for EEG source imaging; Elsevier Science; Journal of Neuroscience Methods; 185; 1; 15-12-2009; 125-132 0165-0270 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/115109 |
| identifier_str_mv |
Valdés Hernández, Pedro A.; Von Ellenrieder, Nicolás; Ojeda Gonzalez, Alejandro; Kochen, Sara Silvia; Alemán Gómez, Yasser; et al.; Approximate average head models for EEG source imaging; Elsevier Science; Journal of Neuroscience Methods; 185; 1; 15-12-2009; 125-132 0165-0270 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S016502700900497X?via%3Dihub info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jneumeth.2009.09.005 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier Science |
| publisher.none.fl_str_mv |
Elsevier Science |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781311120834560 |
| score |
12.982451 |