Electrode and brain modeling in stereo-EEG
- Autores
- Von Ellenrieder, Nicolás; Beltrachini, Leandro; Muravchik, Carlos Horacio
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Objective: To quantify the perturbation due to the presence of a measuring depth electrode on the intracranial electric potential distribution, and to study the effect of the heterogeneity and anisotropy of the brain tissues' electric conductivity. Methods: The governing differential equations are solved with the Boundary Elements Method to compute the perturbation on the electric potential distribution caused by the presence of the measuring electrode, and with the Finite Elements Method to simulate measurements in an heterogeneous anisotropic brain model. Results: The perturbation on the measured electric potential is negligible if the source of electric activity is located more than approximately 1. mm away from the electrode. The error induced by this perturbation in the estimation of the source position is below 1. mm in all tested situations. The results hold for different sizes of the electrode's contacts. The effect of the brain's heterogeneity and anisotropy is more important. In a particular example simulated dipolar sources in the gray matter show localization differences of up to 5. mm between homogeneous isotropic and heterogeneous anisotropic brain models. Conclusions: It is not necessary to include detailed electrode models in order to solve the stereo-EEG (sEEG) forward and inverse problems. The heterogeneity and anisotropy of the brain electric conductivity should be modeled if possible. The effect of using an homogeneous isotropic brain model approximation should be studied in a case by case basis, since it depends on the electrode positions, the subject's electric conductivity map, and the source configuration. Significance: This simulation study is helpful for interpreting the sEEG measurements, and for choosing appropriate electrode and brain models; a necessary first step in any attempt to solve the sEEG inverse problem. © 2012 International Federation of Clinical Neurophysiology.
Fil: Von Ellenrieder, Nicolás. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Electrotecnia. Laboratorio de Electrónica Industrial, Control e Instrumentación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
Fil: Beltrachini, Leandro. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Electrotecnia. Laboratorio de Electrónica Industrial, Control e Instrumentación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
Fil: Muravchik, Carlos Horacio. Universidad Nacional de La Plata; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina - Materia
-
BRAIN ANISOTROPY
DEPTH ELECTRODE
FORWARD PROBLEM
INVERSE PROBLEM
STEREO-EEG - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/190869
Ver los metadatos del registro completo
id |
CONICETDig_953631ac87c2988838bad6781300c07e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/190869 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Electrode and brain modeling in stereo-EEGVon Ellenrieder, NicolásBeltrachini, LeandroMuravchik, Carlos HoracioBRAIN ANISOTROPYDEPTH ELECTRODEFORWARD PROBLEMINVERSE PROBLEMSTEREO-EEGhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Objective: To quantify the perturbation due to the presence of a measuring depth electrode on the intracranial electric potential distribution, and to study the effect of the heterogeneity and anisotropy of the brain tissues' electric conductivity. Methods: The governing differential equations are solved with the Boundary Elements Method to compute the perturbation on the electric potential distribution caused by the presence of the measuring electrode, and with the Finite Elements Method to simulate measurements in an heterogeneous anisotropic brain model. Results: The perturbation on the measured electric potential is negligible if the source of electric activity is located more than approximately 1. mm away from the electrode. The error induced by this perturbation in the estimation of the source position is below 1. mm in all tested situations. The results hold for different sizes of the electrode's contacts. The effect of the brain's heterogeneity and anisotropy is more important. In a particular example simulated dipolar sources in the gray matter show localization differences of up to 5. mm between homogeneous isotropic and heterogeneous anisotropic brain models. Conclusions: It is not necessary to include detailed electrode models in order to solve the stereo-EEG (sEEG) forward and inverse problems. The heterogeneity and anisotropy of the brain electric conductivity should be modeled if possible. The effect of using an homogeneous isotropic brain model approximation should be studied in a case by case basis, since it depends on the electrode positions, the subject's electric conductivity map, and the source configuration. Significance: This simulation study is helpful for interpreting the sEEG measurements, and for choosing appropriate electrode and brain models; a necessary first step in any attempt to solve the sEEG inverse problem. © 2012 International Federation of Clinical Neurophysiology.Fil: Von Ellenrieder, Nicolás. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Electrotecnia. Laboratorio de Electrónica Industrial, Control e Instrumentación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Beltrachini, Leandro. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Electrotecnia. Laboratorio de Electrónica Industrial, Control e Instrumentación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Muravchik, Carlos Horacio. Universidad Nacional de La Plata; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; ArgentinaElsevier Ireland2012-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/190869Von Ellenrieder, Nicolás; Beltrachini, Leandro; Muravchik, Carlos Horacio; Electrode and brain modeling in stereo-EEG; Elsevier Ireland; Clinical Neurophysiology; 123; 9; 9-2012; 1745-17541388-2457CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.clinph.2012.01.019info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S1388245712000673info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T10:44:48Zoai:ri.conicet.gov.ar:11336/190869instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 10:44:48.379CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Electrode and brain modeling in stereo-EEG |
title |
Electrode and brain modeling in stereo-EEG |
spellingShingle |
Electrode and brain modeling in stereo-EEG Von Ellenrieder, Nicolás BRAIN ANISOTROPY DEPTH ELECTRODE FORWARD PROBLEM INVERSE PROBLEM STEREO-EEG |
title_short |
Electrode and brain modeling in stereo-EEG |
title_full |
Electrode and brain modeling in stereo-EEG |
title_fullStr |
Electrode and brain modeling in stereo-EEG |
title_full_unstemmed |
Electrode and brain modeling in stereo-EEG |
title_sort |
Electrode and brain modeling in stereo-EEG |
dc.creator.none.fl_str_mv |
Von Ellenrieder, Nicolás Beltrachini, Leandro Muravchik, Carlos Horacio |
author |
Von Ellenrieder, Nicolás |
author_facet |
Von Ellenrieder, Nicolás Beltrachini, Leandro Muravchik, Carlos Horacio |
author_role |
author |
author2 |
Beltrachini, Leandro Muravchik, Carlos Horacio |
author2_role |
author author |
dc.subject.none.fl_str_mv |
BRAIN ANISOTROPY DEPTH ELECTRODE FORWARD PROBLEM INVERSE PROBLEM STEREO-EEG |
topic |
BRAIN ANISOTROPY DEPTH ELECTRODE FORWARD PROBLEM INVERSE PROBLEM STEREO-EEG |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Objective: To quantify the perturbation due to the presence of a measuring depth electrode on the intracranial electric potential distribution, and to study the effect of the heterogeneity and anisotropy of the brain tissues' electric conductivity. Methods: The governing differential equations are solved with the Boundary Elements Method to compute the perturbation on the electric potential distribution caused by the presence of the measuring electrode, and with the Finite Elements Method to simulate measurements in an heterogeneous anisotropic brain model. Results: The perturbation on the measured electric potential is negligible if the source of electric activity is located more than approximately 1. mm away from the electrode. The error induced by this perturbation in the estimation of the source position is below 1. mm in all tested situations. The results hold for different sizes of the electrode's contacts. The effect of the brain's heterogeneity and anisotropy is more important. In a particular example simulated dipolar sources in the gray matter show localization differences of up to 5. mm between homogeneous isotropic and heterogeneous anisotropic brain models. Conclusions: It is not necessary to include detailed electrode models in order to solve the stereo-EEG (sEEG) forward and inverse problems. The heterogeneity and anisotropy of the brain electric conductivity should be modeled if possible. The effect of using an homogeneous isotropic brain model approximation should be studied in a case by case basis, since it depends on the electrode positions, the subject's electric conductivity map, and the source configuration. Significance: This simulation study is helpful for interpreting the sEEG measurements, and for choosing appropriate electrode and brain models; a necessary first step in any attempt to solve the sEEG inverse problem. © 2012 International Federation of Clinical Neurophysiology. Fil: Von Ellenrieder, Nicolás. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Electrotecnia. Laboratorio de Electrónica Industrial, Control e Instrumentación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina Fil: Beltrachini, Leandro. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Electrotecnia. Laboratorio de Electrónica Industrial, Control e Instrumentación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina Fil: Muravchik, Carlos Horacio. Universidad Nacional de La Plata; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina |
description |
Objective: To quantify the perturbation due to the presence of a measuring depth electrode on the intracranial electric potential distribution, and to study the effect of the heterogeneity and anisotropy of the brain tissues' electric conductivity. Methods: The governing differential equations are solved with the Boundary Elements Method to compute the perturbation on the electric potential distribution caused by the presence of the measuring electrode, and with the Finite Elements Method to simulate measurements in an heterogeneous anisotropic brain model. Results: The perturbation on the measured electric potential is negligible if the source of electric activity is located more than approximately 1. mm away from the electrode. The error induced by this perturbation in the estimation of the source position is below 1. mm in all tested situations. The results hold for different sizes of the electrode's contacts. The effect of the brain's heterogeneity and anisotropy is more important. In a particular example simulated dipolar sources in the gray matter show localization differences of up to 5. mm between homogeneous isotropic and heterogeneous anisotropic brain models. Conclusions: It is not necessary to include detailed electrode models in order to solve the stereo-EEG (sEEG) forward and inverse problems. The heterogeneity and anisotropy of the brain electric conductivity should be modeled if possible. The effect of using an homogeneous isotropic brain model approximation should be studied in a case by case basis, since it depends on the electrode positions, the subject's electric conductivity map, and the source configuration. Significance: This simulation study is helpful for interpreting the sEEG measurements, and for choosing appropriate electrode and brain models; a necessary first step in any attempt to solve the sEEG inverse problem. © 2012 International Federation of Clinical Neurophysiology. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/190869 Von Ellenrieder, Nicolás; Beltrachini, Leandro; Muravchik, Carlos Horacio; Electrode and brain modeling in stereo-EEG; Elsevier Ireland; Clinical Neurophysiology; 123; 9; 9-2012; 1745-1754 1388-2457 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/190869 |
identifier_str_mv |
Von Ellenrieder, Nicolás; Beltrachini, Leandro; Muravchik, Carlos Horacio; Electrode and brain modeling in stereo-EEG; Elsevier Ireland; Clinical Neurophysiology; 123; 9; 9-2012; 1745-1754 1388-2457 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.clinph.2012.01.019 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S1388245712000673 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Ireland |
publisher.none.fl_str_mv |
Elsevier Ireland |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1843605985030045696 |
score |
13.000565 |