Electrode and brain modeling in stereo-EEG

Autores
Von Ellenrieder, Nicolás; Beltrachini, Leandro; Muravchik, Carlos Horacio
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Objective: To quantify the perturbation due to the presence of a measuring depth electrode on the intracranial electric potential distribution, and to study the effect of the heterogeneity and anisotropy of the brain tissues' electric conductivity. Methods: The governing differential equations are solved with the Boundary Elements Method to compute the perturbation on the electric potential distribution caused by the presence of the measuring electrode, and with the Finite Elements Method to simulate measurements in an heterogeneous anisotropic brain model. Results: The perturbation on the measured electric potential is negligible if the source of electric activity is located more than approximately 1. mm away from the electrode. The error induced by this perturbation in the estimation of the source position is below 1. mm in all tested situations. The results hold for different sizes of the electrode's contacts. The effect of the brain's heterogeneity and anisotropy is more important. In a particular example simulated dipolar sources in the gray matter show localization differences of up to 5. mm between homogeneous isotropic and heterogeneous anisotropic brain models. Conclusions: It is not necessary to include detailed electrode models in order to solve the stereo-EEG (sEEG) forward and inverse problems. The heterogeneity and anisotropy of the brain electric conductivity should be modeled if possible. The effect of using an homogeneous isotropic brain model approximation should be studied in a case by case basis, since it depends on the electrode positions, the subject's electric conductivity map, and the source configuration. Significance: This simulation study is helpful for interpreting the sEEG measurements, and for choosing appropriate electrode and brain models; a necessary first step in any attempt to solve the sEEG inverse problem. © 2012 International Federation of Clinical Neurophysiology.
Fil: Von Ellenrieder, Nicolás. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Electrotecnia. Laboratorio de Electrónica Industrial, Control e Instrumentación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
Fil: Beltrachini, Leandro. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Electrotecnia. Laboratorio de Electrónica Industrial, Control e Instrumentación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
Fil: Muravchik, Carlos Horacio. Universidad Nacional de La Plata; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina
Materia
BRAIN ANISOTROPY
DEPTH ELECTRODE
FORWARD PROBLEM
INVERSE PROBLEM
STEREO-EEG
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/190869

id CONICETDig_953631ac87c2988838bad6781300c07e
oai_identifier_str oai:ri.conicet.gov.ar:11336/190869
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Electrode and brain modeling in stereo-EEGVon Ellenrieder, NicolásBeltrachini, LeandroMuravchik, Carlos HoracioBRAIN ANISOTROPYDEPTH ELECTRODEFORWARD PROBLEMINVERSE PROBLEMSTEREO-EEGhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Objective: To quantify the perturbation due to the presence of a measuring depth electrode on the intracranial electric potential distribution, and to study the effect of the heterogeneity and anisotropy of the brain tissues' electric conductivity. Methods: The governing differential equations are solved with the Boundary Elements Method to compute the perturbation on the electric potential distribution caused by the presence of the measuring electrode, and with the Finite Elements Method to simulate measurements in an heterogeneous anisotropic brain model. Results: The perturbation on the measured electric potential is negligible if the source of electric activity is located more than approximately 1. mm away from the electrode. The error induced by this perturbation in the estimation of the source position is below 1. mm in all tested situations. The results hold for different sizes of the electrode's contacts. The effect of the brain's heterogeneity and anisotropy is more important. In a particular example simulated dipolar sources in the gray matter show localization differences of up to 5. mm between homogeneous isotropic and heterogeneous anisotropic brain models. Conclusions: It is not necessary to include detailed electrode models in order to solve the stereo-EEG (sEEG) forward and inverse problems. The heterogeneity and anisotropy of the brain electric conductivity should be modeled if possible. The effect of using an homogeneous isotropic brain model approximation should be studied in a case by case basis, since it depends on the electrode positions, the subject's electric conductivity map, and the source configuration. Significance: This simulation study is helpful for interpreting the sEEG measurements, and for choosing appropriate electrode and brain models; a necessary first step in any attempt to solve the sEEG inverse problem. © 2012 International Federation of Clinical Neurophysiology.Fil: Von Ellenrieder, Nicolás. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Electrotecnia. Laboratorio de Electrónica Industrial, Control e Instrumentación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Beltrachini, Leandro. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Electrotecnia. Laboratorio de Electrónica Industrial, Control e Instrumentación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Muravchik, Carlos Horacio. Universidad Nacional de La Plata; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; ArgentinaElsevier Ireland2012-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/190869Von Ellenrieder, Nicolás; Beltrachini, Leandro; Muravchik, Carlos Horacio; Electrode and brain modeling in stereo-EEG; Elsevier Ireland; Clinical Neurophysiology; 123; 9; 9-2012; 1745-17541388-2457CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.clinph.2012.01.019info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S1388245712000673info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T10:44:48Zoai:ri.conicet.gov.ar:11336/190869instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 10:44:48.379CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Electrode and brain modeling in stereo-EEG
title Electrode and brain modeling in stereo-EEG
spellingShingle Electrode and brain modeling in stereo-EEG
Von Ellenrieder, Nicolás
BRAIN ANISOTROPY
DEPTH ELECTRODE
FORWARD PROBLEM
INVERSE PROBLEM
STEREO-EEG
title_short Electrode and brain modeling in stereo-EEG
title_full Electrode and brain modeling in stereo-EEG
title_fullStr Electrode and brain modeling in stereo-EEG
title_full_unstemmed Electrode and brain modeling in stereo-EEG
title_sort Electrode and brain modeling in stereo-EEG
dc.creator.none.fl_str_mv Von Ellenrieder, Nicolás
Beltrachini, Leandro
Muravchik, Carlos Horacio
author Von Ellenrieder, Nicolás
author_facet Von Ellenrieder, Nicolás
Beltrachini, Leandro
Muravchik, Carlos Horacio
author_role author
author2 Beltrachini, Leandro
Muravchik, Carlos Horacio
author2_role author
author
dc.subject.none.fl_str_mv BRAIN ANISOTROPY
DEPTH ELECTRODE
FORWARD PROBLEM
INVERSE PROBLEM
STEREO-EEG
topic BRAIN ANISOTROPY
DEPTH ELECTRODE
FORWARD PROBLEM
INVERSE PROBLEM
STEREO-EEG
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Objective: To quantify the perturbation due to the presence of a measuring depth electrode on the intracranial electric potential distribution, and to study the effect of the heterogeneity and anisotropy of the brain tissues' electric conductivity. Methods: The governing differential equations are solved with the Boundary Elements Method to compute the perturbation on the electric potential distribution caused by the presence of the measuring electrode, and with the Finite Elements Method to simulate measurements in an heterogeneous anisotropic brain model. Results: The perturbation on the measured electric potential is negligible if the source of electric activity is located more than approximately 1. mm away from the electrode. The error induced by this perturbation in the estimation of the source position is below 1. mm in all tested situations. The results hold for different sizes of the electrode's contacts. The effect of the brain's heterogeneity and anisotropy is more important. In a particular example simulated dipolar sources in the gray matter show localization differences of up to 5. mm between homogeneous isotropic and heterogeneous anisotropic brain models. Conclusions: It is not necessary to include detailed electrode models in order to solve the stereo-EEG (sEEG) forward and inverse problems. The heterogeneity and anisotropy of the brain electric conductivity should be modeled if possible. The effect of using an homogeneous isotropic brain model approximation should be studied in a case by case basis, since it depends on the electrode positions, the subject's electric conductivity map, and the source configuration. Significance: This simulation study is helpful for interpreting the sEEG measurements, and for choosing appropriate electrode and brain models; a necessary first step in any attempt to solve the sEEG inverse problem. © 2012 International Federation of Clinical Neurophysiology.
Fil: Von Ellenrieder, Nicolás. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Electrotecnia. Laboratorio de Electrónica Industrial, Control e Instrumentación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
Fil: Beltrachini, Leandro. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Electrotecnia. Laboratorio de Electrónica Industrial, Control e Instrumentación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
Fil: Muravchik, Carlos Horacio. Universidad Nacional de La Plata; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina
description Objective: To quantify the perturbation due to the presence of a measuring depth electrode on the intracranial electric potential distribution, and to study the effect of the heterogeneity and anisotropy of the brain tissues' electric conductivity. Methods: The governing differential equations are solved with the Boundary Elements Method to compute the perturbation on the electric potential distribution caused by the presence of the measuring electrode, and with the Finite Elements Method to simulate measurements in an heterogeneous anisotropic brain model. Results: The perturbation on the measured electric potential is negligible if the source of electric activity is located more than approximately 1. mm away from the electrode. The error induced by this perturbation in the estimation of the source position is below 1. mm in all tested situations. The results hold for different sizes of the electrode's contacts. The effect of the brain's heterogeneity and anisotropy is more important. In a particular example simulated dipolar sources in the gray matter show localization differences of up to 5. mm between homogeneous isotropic and heterogeneous anisotropic brain models. Conclusions: It is not necessary to include detailed electrode models in order to solve the stereo-EEG (sEEG) forward and inverse problems. The heterogeneity and anisotropy of the brain electric conductivity should be modeled if possible. The effect of using an homogeneous isotropic brain model approximation should be studied in a case by case basis, since it depends on the electrode positions, the subject's electric conductivity map, and the source configuration. Significance: This simulation study is helpful for interpreting the sEEG measurements, and for choosing appropriate electrode and brain models; a necessary first step in any attempt to solve the sEEG inverse problem. © 2012 International Federation of Clinical Neurophysiology.
publishDate 2012
dc.date.none.fl_str_mv 2012-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/190869
Von Ellenrieder, Nicolás; Beltrachini, Leandro; Muravchik, Carlos Horacio; Electrode and brain modeling in stereo-EEG; Elsevier Ireland; Clinical Neurophysiology; 123; 9; 9-2012; 1745-1754
1388-2457
CONICET Digital
CONICET
url http://hdl.handle.net/11336/190869
identifier_str_mv Von Ellenrieder, Nicolás; Beltrachini, Leandro; Muravchik, Carlos Horacio; Electrode and brain modeling in stereo-EEG; Elsevier Ireland; Clinical Neurophysiology; 123; 9; 9-2012; 1745-1754
1388-2457
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.clinph.2012.01.019
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S1388245712000673
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Ireland
publisher.none.fl_str_mv Elsevier Ireland
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1843605985030045696
score 13.000565