Bounds and invariant sets for a class of discrete-time switching systems with perturbations

Autores
Haimovich, Hernan; Seron, Maria Marta
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We present a novel method to compute componentwise ultimate bounds and invariant regions for a class of switching discrete-time linear systems with perturbation bounds that may depend nonlinearly on a delayed state. The method has the important advantage that it allows each component of the perturbation vector to have an independent bound and that the bounds and sets obtained are also given componentwise. This componentwise method does not employ a standard norm for bounding either the perturbation or state vectors, and thus may avoid conservativeness due to different perturbation or state vector components having substantially different bounds. We also establish the relationship between the class of switching linear systems to which the proposed method can be applied and those that admit a common quadratic Lyapunov function. We illustrate the application of our method via numerical examples, including the fault tolerance analysis of the feedback control of a winding machine.
Fil: Haimovich, Hernan. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Escuela de Ingeniería Electrónica. Departamento de Control; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina
Fil: Seron, Maria Marta. University of Newcastle. Centre for Complex Dynamic Systems and Control; Australia
Materia
Switching Systems
Ultimate Bounds
Invariant Sets
Componentwise Methods
Practical Stability
Fault Tolerant Control
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/4814

id CONICETDig_bd48923dce84d18f90ad9957a41303e2
oai_identifier_str oai:ri.conicet.gov.ar:11336/4814
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Bounds and invariant sets for a class of discrete-time switching systems with perturbationsHaimovich, HernanSeron, Maria MartaSwitching SystemsUltimate BoundsInvariant SetsComponentwise MethodsPractical StabilityFault Tolerant Controlhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2We present a novel method to compute componentwise ultimate bounds and invariant regions for a class of switching discrete-time linear systems with perturbation bounds that may depend nonlinearly on a delayed state. The method has the important advantage that it allows each component of the perturbation vector to have an independent bound and that the bounds and sets obtained are also given componentwise. This componentwise method does not employ a standard norm for bounding either the perturbation or state vectors, and thus may avoid conservativeness due to different perturbation or state vector components having substantially different bounds. We also establish the relationship between the class of switching linear systems to which the proposed method can be applied and those that admit a common quadratic Lyapunov function. We illustrate the application of our method via numerical examples, including the fault tolerance analysis of the feedback control of a winding machine.Fil: Haimovich, Hernan. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Escuela de Ingeniería Electrónica. Departamento de Control; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; ArgentinaFil: Seron, Maria Marta. University of Newcastle. Centre for Complex Dynamic Systems and Control; AustraliaTaylor & Francis2013-09-13info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/4814Haimovich, Hernan; Seron, Maria Marta; Bounds and invariant sets for a class of discrete-time switching systems with perturbations; Taylor & Francis; International Journal Of Control; 87; 2; 13-9-2013; 371-3830020-7179enginfo:eu-repo/semantics/altIdentifier/url/http://www.tandfonline.com/doi/abs/10.1080/00207179.2013.834536info:eu-repo/semantics/altIdentifier/doi/10.1080/00207179.2013.834536info:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:59:13Zoai:ri.conicet.gov.ar:11336/4814instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:59:13.592CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Bounds and invariant sets for a class of discrete-time switching systems with perturbations
title Bounds and invariant sets for a class of discrete-time switching systems with perturbations
spellingShingle Bounds and invariant sets for a class of discrete-time switching systems with perturbations
Haimovich, Hernan
Switching Systems
Ultimate Bounds
Invariant Sets
Componentwise Methods
Practical Stability
Fault Tolerant Control
title_short Bounds and invariant sets for a class of discrete-time switching systems with perturbations
title_full Bounds and invariant sets for a class of discrete-time switching systems with perturbations
title_fullStr Bounds and invariant sets for a class of discrete-time switching systems with perturbations
title_full_unstemmed Bounds and invariant sets for a class of discrete-time switching systems with perturbations
title_sort Bounds and invariant sets for a class of discrete-time switching systems with perturbations
dc.creator.none.fl_str_mv Haimovich, Hernan
Seron, Maria Marta
author Haimovich, Hernan
author_facet Haimovich, Hernan
Seron, Maria Marta
author_role author
author2 Seron, Maria Marta
author2_role author
dc.subject.none.fl_str_mv Switching Systems
Ultimate Bounds
Invariant Sets
Componentwise Methods
Practical Stability
Fault Tolerant Control
topic Switching Systems
Ultimate Bounds
Invariant Sets
Componentwise Methods
Practical Stability
Fault Tolerant Control
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv We present a novel method to compute componentwise ultimate bounds and invariant regions for a class of switching discrete-time linear systems with perturbation bounds that may depend nonlinearly on a delayed state. The method has the important advantage that it allows each component of the perturbation vector to have an independent bound and that the bounds and sets obtained are also given componentwise. This componentwise method does not employ a standard norm for bounding either the perturbation or state vectors, and thus may avoid conservativeness due to different perturbation or state vector components having substantially different bounds. We also establish the relationship between the class of switching linear systems to which the proposed method can be applied and those that admit a common quadratic Lyapunov function. We illustrate the application of our method via numerical examples, including the fault tolerance analysis of the feedback control of a winding machine.
Fil: Haimovich, Hernan. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Escuela de Ingeniería Electrónica. Departamento de Control; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina
Fil: Seron, Maria Marta. University of Newcastle. Centre for Complex Dynamic Systems and Control; Australia
description We present a novel method to compute componentwise ultimate bounds and invariant regions for a class of switching discrete-time linear systems with perturbation bounds that may depend nonlinearly on a delayed state. The method has the important advantage that it allows each component of the perturbation vector to have an independent bound and that the bounds and sets obtained are also given componentwise. This componentwise method does not employ a standard norm for bounding either the perturbation or state vectors, and thus may avoid conservativeness due to different perturbation or state vector components having substantially different bounds. We also establish the relationship between the class of switching linear systems to which the proposed method can be applied and those that admit a common quadratic Lyapunov function. We illustrate the application of our method via numerical examples, including the fault tolerance analysis of the feedback control of a winding machine.
publishDate 2013
dc.date.none.fl_str_mv 2013-09-13
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/4814
Haimovich, Hernan; Seron, Maria Marta; Bounds and invariant sets for a class of discrete-time switching systems with perturbations; Taylor & Francis; International Journal Of Control; 87; 2; 13-9-2013; 371-383
0020-7179
url http://hdl.handle.net/11336/4814
identifier_str_mv Haimovich, Hernan; Seron, Maria Marta; Bounds and invariant sets for a class of discrete-time switching systems with perturbations; Taylor & Francis; International Journal Of Control; 87; 2; 13-9-2013; 371-383
0020-7179
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.tandfonline.com/doi/abs/10.1080/00207179.2013.834536
info:eu-repo/semantics/altIdentifier/doi/10.1080/00207179.2013.834536
info:eu-repo/semantics/altIdentifier/doi/
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Taylor & Francis
publisher.none.fl_str_mv Taylor & Francis
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269568458817536
score 13.13397