Numerical Treatment of Interfaces for Second-Order Wave Equations

Autores
Parisi, Maria Florencia; Iriondo, Mirta Susana; Cécere, Mariana Andrea; Reula, Oscar Alejandro
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this article we develop a numerical scheme to deal with interfaces between touching numerical grids when solving the second-order wave equation. We show that it is possible to implement an interface scheme of “penalty” type for the second-order wave equation, similar to the ones used for first-order hyperbolic and parabolic equations, and the second-order scheme used by Mattsson et al. 2008. These schemes, known as SAT schemes for finite difference approximations and penalties for spectral ones, and ours share similar properties but in our case one needs to pass at the interface a smaller amount of data than previously known schemes. This is important for multi-block parallelizations in several dimensions, for it implies that one obtains the same solution quality while sharing among different computational grids only a fraction of the data one would need for a comparable (in accuracy) SAT or Mattsson et al.’s scheme. The semi-discrete approximation used here preserves the norm and uses standard finite-difference operators satisfying summation by parts. For the time integrator we use a semi-implicit IMEX Runge–Kutta method. This is crucial, since the explicit Runge–Kutta method would be impractical given the severe restrictions that arise from the stiff parts of the equations.
Fil: Parisi, Maria Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Fil: Iriondo, Mirta Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomia Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomia Teórica y Experimental; Argentina
Fil: Cécere, Mariana Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Fil: Reula, Oscar Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Materia
Finite-Difference Methods
Partial Differential Equations
Ordinary And Partial Differential Equations
Boundary Value Problems
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/31793

id CONICETDig_e35365a08a5201e744e76f35956a3e2c
oai_identifier_str oai:ri.conicet.gov.ar:11336/31793
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Numerical Treatment of Interfaces for Second-Order Wave EquationsParisi, Maria FlorenciaIriondo, Mirta SusanaCécere, Mariana AndreaReula, Oscar AlejandroFinite-Difference MethodsPartial Differential EquationsOrdinary And Partial Differential EquationsBoundary Value Problemshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this article we develop a numerical scheme to deal with interfaces between touching numerical grids when solving the second-order wave equation. We show that it is possible to implement an interface scheme of “penalty” type for the second-order wave equation, similar to the ones used for first-order hyperbolic and parabolic equations, and the second-order scheme used by Mattsson et al. 2008. These schemes, known as SAT schemes for finite difference approximations and penalties for spectral ones, and ours share similar properties but in our case one needs to pass at the interface a smaller amount of data than previously known schemes. This is important for multi-block parallelizations in several dimensions, for it implies that one obtains the same solution quality while sharing among different computational grids only a fraction of the data one would need for a comparable (in accuracy) SAT or Mattsson et al.’s scheme. The semi-discrete approximation used here preserves the norm and uses standard finite-difference operators satisfying summation by parts. For the time integrator we use a semi-implicit IMEX Runge–Kutta method. This is crucial, since the explicit Runge–Kutta method would be impractical given the severe restrictions that arise from the stiff parts of the equations.Fil: Parisi, Maria Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Iriondo, Mirta Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomia Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomia Teórica y Experimental; ArgentinaFil: Cécere, Mariana Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Reula, Oscar Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaSpringer/plenum Publishers2014-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/31793Reula, Oscar Alejandro; Cécere, Mariana Andrea; Iriondo, Mirta Susana; Parisi, Maria Florencia; Numerical Treatment of Interfaces for Second-Order Wave Equations; Springer/plenum Publishers; Journal Of Scientific Computing; 60; 3; 6-2014; 875-8970885-7474CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/ 10.1007/s10915-014-9880-7info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10915-014-9880-7info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:09:48Zoai:ri.conicet.gov.ar:11336/31793instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:09:48.524CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Numerical Treatment of Interfaces for Second-Order Wave Equations
title Numerical Treatment of Interfaces for Second-Order Wave Equations
spellingShingle Numerical Treatment of Interfaces for Second-Order Wave Equations
Parisi, Maria Florencia
Finite-Difference Methods
Partial Differential Equations
Ordinary And Partial Differential Equations
Boundary Value Problems
title_short Numerical Treatment of Interfaces for Second-Order Wave Equations
title_full Numerical Treatment of Interfaces for Second-Order Wave Equations
title_fullStr Numerical Treatment of Interfaces for Second-Order Wave Equations
title_full_unstemmed Numerical Treatment of Interfaces for Second-Order Wave Equations
title_sort Numerical Treatment of Interfaces for Second-Order Wave Equations
dc.creator.none.fl_str_mv Parisi, Maria Florencia
Iriondo, Mirta Susana
Cécere, Mariana Andrea
Reula, Oscar Alejandro
author Parisi, Maria Florencia
author_facet Parisi, Maria Florencia
Iriondo, Mirta Susana
Cécere, Mariana Andrea
Reula, Oscar Alejandro
author_role author
author2 Iriondo, Mirta Susana
Cécere, Mariana Andrea
Reula, Oscar Alejandro
author2_role author
author
author
dc.subject.none.fl_str_mv Finite-Difference Methods
Partial Differential Equations
Ordinary And Partial Differential Equations
Boundary Value Problems
topic Finite-Difference Methods
Partial Differential Equations
Ordinary And Partial Differential Equations
Boundary Value Problems
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this article we develop a numerical scheme to deal with interfaces between touching numerical grids when solving the second-order wave equation. We show that it is possible to implement an interface scheme of “penalty” type for the second-order wave equation, similar to the ones used for first-order hyperbolic and parabolic equations, and the second-order scheme used by Mattsson et al. 2008. These schemes, known as SAT schemes for finite difference approximations and penalties for spectral ones, and ours share similar properties but in our case one needs to pass at the interface a smaller amount of data than previously known schemes. This is important for multi-block parallelizations in several dimensions, for it implies that one obtains the same solution quality while sharing among different computational grids only a fraction of the data one would need for a comparable (in accuracy) SAT or Mattsson et al.’s scheme. The semi-discrete approximation used here preserves the norm and uses standard finite-difference operators satisfying summation by parts. For the time integrator we use a semi-implicit IMEX Runge–Kutta method. This is crucial, since the explicit Runge–Kutta method would be impractical given the severe restrictions that arise from the stiff parts of the equations.
Fil: Parisi, Maria Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Fil: Iriondo, Mirta Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomia Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomia Teórica y Experimental; Argentina
Fil: Cécere, Mariana Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Fil: Reula, Oscar Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
description In this article we develop a numerical scheme to deal with interfaces between touching numerical grids when solving the second-order wave equation. We show that it is possible to implement an interface scheme of “penalty” type for the second-order wave equation, similar to the ones used for first-order hyperbolic and parabolic equations, and the second-order scheme used by Mattsson et al. 2008. These schemes, known as SAT schemes for finite difference approximations and penalties for spectral ones, and ours share similar properties but in our case one needs to pass at the interface a smaller amount of data than previously known schemes. This is important for multi-block parallelizations in several dimensions, for it implies that one obtains the same solution quality while sharing among different computational grids only a fraction of the data one would need for a comparable (in accuracy) SAT or Mattsson et al.’s scheme. The semi-discrete approximation used here preserves the norm and uses standard finite-difference operators satisfying summation by parts. For the time integrator we use a semi-implicit IMEX Runge–Kutta method. This is crucial, since the explicit Runge–Kutta method would be impractical given the severe restrictions that arise from the stiff parts of the equations.
publishDate 2014
dc.date.none.fl_str_mv 2014-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/31793
Reula, Oscar Alejandro; Cécere, Mariana Andrea; Iriondo, Mirta Susana; Parisi, Maria Florencia; Numerical Treatment of Interfaces for Second-Order Wave Equations; Springer/plenum Publishers; Journal Of Scientific Computing; 60; 3; 6-2014; 875-897
0885-7474
CONICET Digital
CONICET
url http://hdl.handle.net/11336/31793
identifier_str_mv Reula, Oscar Alejandro; Cécere, Mariana Andrea; Iriondo, Mirta Susana; Parisi, Maria Florencia; Numerical Treatment of Interfaces for Second-Order Wave Equations; Springer/plenum Publishers; Journal Of Scientific Computing; 60; 3; 6-2014; 875-897
0885-7474
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/ 10.1007/s10915-014-9880-7
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10915-014-9880-7
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer/plenum Publishers
publisher.none.fl_str_mv Springer/plenum Publishers
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270094519959552
score 13.13397