A bioinformatic approach for the prediction and functional classification of Toxoplasma gondii long non-coding RNAs
- Autores
- Vanagas, Laura; Cristaldi, Constanza; La Bella, Gino; Ganuza, Agustina; Angel, Sergio Oscar; Alonso, Andrés Mariano
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Long non-coding RNAs (lncRNAs) have emerged as significant players in diverse cellular processes, including cell differentiation. Advancements in computational methodologies have facilitated the prediction of lncRNA functions, enabling insights even in non-model organisms like pathogenic parasites, in roles such as parasite development, antigenic variation, and epigenetics. In this work, we focus on the apicomplexan Toxoplasma gondii differentiation process, where the infective stage, tachyzoite, can develop into the cysted stage, bradyzoite, under stress conditions. Using a publicly available transcriptome dataset, we predicted putative lncRNA sequences associated with this differentiation process. Notably, a substantial proportion of these putative lncRNAs exhibited stage-specific expression, particularly at the bradyzoite stage. Furthermore, co-expression patterns between coding transcripts and putative TglncRNAs suggest their involvement in shared processes, such as bradyzoite development. Putative TglncRNA loci analysis revealed their potential influence on the expression of nearby coding genes, including subtelomeric genes unique to the T. gondii genome. Finally we propose a k-mer analysis approach to predict putative functional relationships between characterized lncRNAs from model organisms like Homo sapiens and the putative T. gondii lncRNAs. Our perspective led to predict putative T. gondii lncRNA that potentially could act mediating DNA damage repair pathways, opening a new study field to validate this kind of adaptive mechanisms of T. gondii in response to stress conditions.
Fil: Vanagas, Laura. Universidad Nacional de San Martin. Instituto Tecnologico de Chascomus. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - la Plata. Instituto Tecnologico de Chascomus.; Argentina
Fil: Cristaldi, Constanza. Universidad Nacional de San Martin. Instituto Tecnologico de Chascomus. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - la Plata. Instituto Tecnologico de Chascomus.; Argentina
Fil: La Bella, Gino. Universidad Nacional de San Martin. Instituto Tecnologico de Chascomus. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - la Plata. Instituto Tecnologico de Chascomus.; Argentina
Fil: Ganuza, Agustina. Universidad Nacional de San Martin. Instituto Tecnologico de Chascomus. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - la Plata. Instituto Tecnologico de Chascomus.; Argentina
Fil: Angel, Sergio Oscar. Universidad Nacional de San Martin. Instituto Tecnologico de Chascomus. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - la Plata. Instituto Tecnologico de Chascomus.; Argentina
Fil: Alonso, Andrés Mariano. Universidad Nacional de San Martin. Instituto Tecnologico de Chascomus. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - la Plata. Instituto Tecnologico de Chascomus.; Argentina - Materia
-
TOXOPLASMA GONDII
NON-CODING RNAS
STRESS RESPONSE
DIFFERENTIATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/248680
Ver los metadatos del registro completo
id |
CONICETDig_e2712bc0fb05d09f03f3ff3c0204d98a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/248680 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A bioinformatic approach for the prediction and functional classification of Toxoplasma gondii long non-coding RNAsVanagas, LauraCristaldi, ConstanzaLa Bella, GinoGanuza, AgustinaAngel, Sergio OscarAlonso, Andrés MarianoTOXOPLASMA GONDIINON-CODING RNASSTRESS RESPONSEDIFFERENTIATIONhttps://purl.org/becyt/ford/1.7https://purl.org/becyt/ford/1Long non-coding RNAs (lncRNAs) have emerged as significant players in diverse cellular processes, including cell differentiation. Advancements in computational methodologies have facilitated the prediction of lncRNA functions, enabling insights even in non-model organisms like pathogenic parasites, in roles such as parasite development, antigenic variation, and epigenetics. In this work, we focus on the apicomplexan Toxoplasma gondii differentiation process, where the infective stage, tachyzoite, can develop into the cysted stage, bradyzoite, under stress conditions. Using a publicly available transcriptome dataset, we predicted putative lncRNA sequences associated with this differentiation process. Notably, a substantial proportion of these putative lncRNAs exhibited stage-specific expression, particularly at the bradyzoite stage. Furthermore, co-expression patterns between coding transcripts and putative TglncRNAs suggest their involvement in shared processes, such as bradyzoite development. Putative TglncRNA loci analysis revealed their potential influence on the expression of nearby coding genes, including subtelomeric genes unique to the T. gondii genome. Finally we propose a k-mer analysis approach to predict putative functional relationships between characterized lncRNAs from model organisms like Homo sapiens and the putative T. gondii lncRNAs. Our perspective led to predict putative T. gondii lncRNA that potentially could act mediating DNA damage repair pathways, opening a new study field to validate this kind of adaptive mechanisms of T. gondii in response to stress conditions.Fil: Vanagas, Laura. Universidad Nacional de San Martin. Instituto Tecnologico de Chascomus. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - la Plata. Instituto Tecnologico de Chascomus.; ArgentinaFil: Cristaldi, Constanza. Universidad Nacional de San Martin. Instituto Tecnologico de Chascomus. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - la Plata. Instituto Tecnologico de Chascomus.; ArgentinaFil: La Bella, Gino. Universidad Nacional de San Martin. Instituto Tecnologico de Chascomus. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - la Plata. Instituto Tecnologico de Chascomus.; ArgentinaFil: Ganuza, Agustina. Universidad Nacional de San Martin. Instituto Tecnologico de Chascomus. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - la Plata. Instituto Tecnologico de Chascomus.; ArgentinaFil: Angel, Sergio Oscar. Universidad Nacional de San Martin. Instituto Tecnologico de Chascomus. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - la Plata. Instituto Tecnologico de Chascomus.; ArgentinaFil: Alonso, Andrés Mariano. Universidad Nacional de San Martin. Instituto Tecnologico de Chascomus. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - la Plata. Instituto Tecnologico de Chascomus.; ArgentinaNature2024-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/248680Vanagas, Laura; Cristaldi, Constanza; La Bella, Gino; Ganuza, Agustina; Angel, Sergio Oscar; et al.; A bioinformatic approach for the prediction and functional classification of Toxoplasma gondii long non-coding RNAs; Nature; Scientific Reports; 14; 1; 11-2024; 1-142045-2322CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-024-79204-6info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-024-79204-6info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:45:27Zoai:ri.conicet.gov.ar:11336/248680instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:45:27.789CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A bioinformatic approach for the prediction and functional classification of Toxoplasma gondii long non-coding RNAs |
title |
A bioinformatic approach for the prediction and functional classification of Toxoplasma gondii long non-coding RNAs |
spellingShingle |
A bioinformatic approach for the prediction and functional classification of Toxoplasma gondii long non-coding RNAs Vanagas, Laura TOXOPLASMA GONDII NON-CODING RNAS STRESS RESPONSE DIFFERENTIATION |
title_short |
A bioinformatic approach for the prediction and functional classification of Toxoplasma gondii long non-coding RNAs |
title_full |
A bioinformatic approach for the prediction and functional classification of Toxoplasma gondii long non-coding RNAs |
title_fullStr |
A bioinformatic approach for the prediction and functional classification of Toxoplasma gondii long non-coding RNAs |
title_full_unstemmed |
A bioinformatic approach for the prediction and functional classification of Toxoplasma gondii long non-coding RNAs |
title_sort |
A bioinformatic approach for the prediction and functional classification of Toxoplasma gondii long non-coding RNAs |
dc.creator.none.fl_str_mv |
Vanagas, Laura Cristaldi, Constanza La Bella, Gino Ganuza, Agustina Angel, Sergio Oscar Alonso, Andrés Mariano |
author |
Vanagas, Laura |
author_facet |
Vanagas, Laura Cristaldi, Constanza La Bella, Gino Ganuza, Agustina Angel, Sergio Oscar Alonso, Andrés Mariano |
author_role |
author |
author2 |
Cristaldi, Constanza La Bella, Gino Ganuza, Agustina Angel, Sergio Oscar Alonso, Andrés Mariano |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
TOXOPLASMA GONDII NON-CODING RNAS STRESS RESPONSE DIFFERENTIATION |
topic |
TOXOPLASMA GONDII NON-CODING RNAS STRESS RESPONSE DIFFERENTIATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.7 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Long non-coding RNAs (lncRNAs) have emerged as significant players in diverse cellular processes, including cell differentiation. Advancements in computational methodologies have facilitated the prediction of lncRNA functions, enabling insights even in non-model organisms like pathogenic parasites, in roles such as parasite development, antigenic variation, and epigenetics. In this work, we focus on the apicomplexan Toxoplasma gondii differentiation process, where the infective stage, tachyzoite, can develop into the cysted stage, bradyzoite, under stress conditions. Using a publicly available transcriptome dataset, we predicted putative lncRNA sequences associated with this differentiation process. Notably, a substantial proportion of these putative lncRNAs exhibited stage-specific expression, particularly at the bradyzoite stage. Furthermore, co-expression patterns between coding transcripts and putative TglncRNAs suggest their involvement in shared processes, such as bradyzoite development. Putative TglncRNA loci analysis revealed their potential influence on the expression of nearby coding genes, including subtelomeric genes unique to the T. gondii genome. Finally we propose a k-mer analysis approach to predict putative functional relationships between characterized lncRNAs from model organisms like Homo sapiens and the putative T. gondii lncRNAs. Our perspective led to predict putative T. gondii lncRNA that potentially could act mediating DNA damage repair pathways, opening a new study field to validate this kind of adaptive mechanisms of T. gondii in response to stress conditions. Fil: Vanagas, Laura. Universidad Nacional de San Martin. Instituto Tecnologico de Chascomus. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - la Plata. Instituto Tecnologico de Chascomus.; Argentina Fil: Cristaldi, Constanza. Universidad Nacional de San Martin. Instituto Tecnologico de Chascomus. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - la Plata. Instituto Tecnologico de Chascomus.; Argentina Fil: La Bella, Gino. Universidad Nacional de San Martin. Instituto Tecnologico de Chascomus. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - la Plata. Instituto Tecnologico de Chascomus.; Argentina Fil: Ganuza, Agustina. Universidad Nacional de San Martin. Instituto Tecnologico de Chascomus. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - la Plata. Instituto Tecnologico de Chascomus.; Argentina Fil: Angel, Sergio Oscar. Universidad Nacional de San Martin. Instituto Tecnologico de Chascomus. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - la Plata. Instituto Tecnologico de Chascomus.; Argentina Fil: Alonso, Andrés Mariano. Universidad Nacional de San Martin. Instituto Tecnologico de Chascomus. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - la Plata. Instituto Tecnologico de Chascomus.; Argentina |
description |
Long non-coding RNAs (lncRNAs) have emerged as significant players in diverse cellular processes, including cell differentiation. Advancements in computational methodologies have facilitated the prediction of lncRNA functions, enabling insights even in non-model organisms like pathogenic parasites, in roles such as parasite development, antigenic variation, and epigenetics. In this work, we focus on the apicomplexan Toxoplasma gondii differentiation process, where the infective stage, tachyzoite, can develop into the cysted stage, bradyzoite, under stress conditions. Using a publicly available transcriptome dataset, we predicted putative lncRNA sequences associated with this differentiation process. Notably, a substantial proportion of these putative lncRNAs exhibited stage-specific expression, particularly at the bradyzoite stage. Furthermore, co-expression patterns between coding transcripts and putative TglncRNAs suggest their involvement in shared processes, such as bradyzoite development. Putative TglncRNA loci analysis revealed their potential influence on the expression of nearby coding genes, including subtelomeric genes unique to the T. gondii genome. Finally we propose a k-mer analysis approach to predict putative functional relationships between characterized lncRNAs from model organisms like Homo sapiens and the putative T. gondii lncRNAs. Our perspective led to predict putative T. gondii lncRNA that potentially could act mediating DNA damage repair pathways, opening a new study field to validate this kind of adaptive mechanisms of T. gondii in response to stress conditions. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/248680 Vanagas, Laura; Cristaldi, Constanza; La Bella, Gino; Ganuza, Agustina; Angel, Sergio Oscar; et al.; A bioinformatic approach for the prediction and functional classification of Toxoplasma gondii long non-coding RNAs; Nature; Scientific Reports; 14; 1; 11-2024; 1-14 2045-2322 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/248680 |
identifier_str_mv |
Vanagas, Laura; Cristaldi, Constanza; La Bella, Gino; Ganuza, Agustina; Angel, Sergio Oscar; et al.; A bioinformatic approach for the prediction and functional classification of Toxoplasma gondii long non-coding RNAs; Nature; Scientific Reports; 14; 1; 11-2024; 1-14 2045-2322 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-024-79204-6 info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-024-79204-6 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Nature |
publisher.none.fl_str_mv |
Nature |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268732687122432 |
score |
13.13397 |