Anodic ph distribution analysis during electrochemical treatment of tumors: numerical simulations

Autores
Turjanski, Pablo Guillermo; Soba, Alejandro; Suarez, Cecilia; Colombo, Lucas Luis; González, Graciela; Molina, Fernando Víctor; Marshall, Guillermo Ricardo
Año de publicación
2007
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Electrochemotherapy (EChT) of tumors consists in the passage of a direct electric current through electrodes inserted locally in the tissue, mainly causing its necrosis. This kind of treatment has been specially applied in China for the last ten years in more than 10 000 patients with good clinical results. The extreme pH changes induced by EChT has been proposed as the main tumor destruction mechanism. In this paper, we describe two different numerical models of EChT (non-buffered and buffered models) that analyze electrolyte diffusive and migratory transport near the anode in a diluted solution, with or without the presence of buffer in the medium. These models use the quasi-one-dimensional Nernst-Planck equations under the hypothesis of electroneutrality and galvanostatic conditions. The equations are solved, for each time step, with finite differences in a fixed domain with a variable mesh that allows greater accuracy near the anodic boundary region. We compare pH distribution predictions derived from the non-buffered and the buffered models with experimental results obtained from collagen I gels and subcutaneous tumors developed in mice, respectively. Simulations predict that, after the EChT treatment, an initial condition with an homogeneous and almost neutral pH becomes extremely acid at the anode, rapidly recovering its neutral value as we move away from it. The strong acidification expands through the anodic area as the EChT dosage increases. These predictions are in good agreement with experimental results. Other qualitative and quantitative comparisons reveal that the non-buffered model has a better correlation with reality than the buffered one. This approach and results open a promising area of research that may help in the elucidation of the real consequences of an EChT applied to tumor tissues. We believe this could have significant implications in the future design of optimal operative conditions and dose planning of this kind of therapy.
Fil: Turjanski, Pablo Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Computación. Laboratorio de Sistemas Complejos; Argentina
Fil: Soba, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Computación. Laboratorio de Sistemas Complejos; Argentina
Fil: Suarez, Cecilia. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Computación. Laboratorio de Sistemas Complejos; Argentina
Fil: Colombo, Lucas Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Oncología "Ángel H. Roffo"; Argentina
Fil: González, Graciela. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Computación. Laboratorio de Sistemas Complejos; Argentina
Fil: Molina, Fernando Víctor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: Marshall, Guillermo Ricardo. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Computación. Laboratorio de Sistemas Complejos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Tumors
Electrochemical treatment
Mathematical modelling
Numerical simulation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/163921

id CONICETDig_e200567a363a02eb4c4680eea31173f4
oai_identifier_str oai:ri.conicet.gov.ar:11336/163921
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Anodic ph distribution analysis during electrochemical treatment of tumors: numerical simulationsTurjanski, Pablo GuillermoSoba, AlejandroSuarez, CeciliaColombo, Lucas LuisGonzález, GracielaMolina, Fernando VíctorMarshall, Guillermo RicardoTumorsElectrochemical treatmentMathematical modellingNumerical simulationhttps://purl.org/becyt/ford/3.2https://purl.org/becyt/ford/3Electrochemotherapy (EChT) of tumors consists in the passage of a direct electric current through electrodes inserted locally in the tissue, mainly causing its necrosis. This kind of treatment has been specially applied in China for the last ten years in more than 10 000 patients with good clinical results. The extreme pH changes induced by EChT has been proposed as the main tumor destruction mechanism. In this paper, we describe two different numerical models of EChT (non-buffered and buffered models) that analyze electrolyte diffusive and migratory transport near the anode in a diluted solution, with or without the presence of buffer in the medium. These models use the quasi-one-dimensional Nernst-Planck equations under the hypothesis of electroneutrality and galvanostatic conditions. The equations are solved, for each time step, with finite differences in a fixed domain with a variable mesh that allows greater accuracy near the anodic boundary region. We compare pH distribution predictions derived from the non-buffered and the buffered models with experimental results obtained from collagen I gels and subcutaneous tumors developed in mice, respectively. Simulations predict that, after the EChT treatment, an initial condition with an homogeneous and almost neutral pH becomes extremely acid at the anode, rapidly recovering its neutral value as we move away from it. The strong acidification expands through the anodic area as the EChT dosage increases. These predictions are in good agreement with experimental results. Other qualitative and quantitative comparisons reveal that the non-buffered model has a better correlation with reality than the buffered one. This approach and results open a promising area of research that may help in the elucidation of the real consequences of an EChT applied to tumor tissues. We believe this could have significant implications in the future design of optimal operative conditions and dose planning of this kind of therapy.Fil: Turjanski, Pablo Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Computación. Laboratorio de Sistemas Complejos; ArgentinaFil: Soba, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Computación. Laboratorio de Sistemas Complejos; ArgentinaFil: Suarez, Cecilia. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Computación. Laboratorio de Sistemas Complejos; ArgentinaFil: Colombo, Lucas Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Oncología "Ángel H. Roffo"; ArgentinaFil: González, Graciela. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Computación. Laboratorio de Sistemas Complejos; ArgentinaFil: Molina, Fernando Víctor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Marshall, Guillermo Ricardo. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Computación. Laboratorio de Sistemas Complejos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAsociación Argentina de Mecánica Computacional2007-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/163921Turjanski, Pablo Guillermo; Soba, Alejandro; Suarez, Cecilia; Colombo, Lucas Luis; González, Graciela; et al.; Anodic ph distribution analysis during electrochemical treatment of tumors: numerical simulations; Asociación Argentina de Mecánica Computacional; Mecánica Computacional; XXVI; 40; 12-2007; 3458-34742591-3522CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://venus.santafe-conicet.gov.ar/ojs/index.php/mc/article/view/1355info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:49:31Zoai:ri.conicet.gov.ar:11336/163921instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:49:32.037CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Anodic ph distribution analysis during electrochemical treatment of tumors: numerical simulations
title Anodic ph distribution analysis during electrochemical treatment of tumors: numerical simulations
spellingShingle Anodic ph distribution analysis during electrochemical treatment of tumors: numerical simulations
Turjanski, Pablo Guillermo
Tumors
Electrochemical treatment
Mathematical modelling
Numerical simulation
title_short Anodic ph distribution analysis during electrochemical treatment of tumors: numerical simulations
title_full Anodic ph distribution analysis during electrochemical treatment of tumors: numerical simulations
title_fullStr Anodic ph distribution analysis during electrochemical treatment of tumors: numerical simulations
title_full_unstemmed Anodic ph distribution analysis during electrochemical treatment of tumors: numerical simulations
title_sort Anodic ph distribution analysis during electrochemical treatment of tumors: numerical simulations
dc.creator.none.fl_str_mv Turjanski, Pablo Guillermo
Soba, Alejandro
Suarez, Cecilia
Colombo, Lucas Luis
González, Graciela
Molina, Fernando Víctor
Marshall, Guillermo Ricardo
author Turjanski, Pablo Guillermo
author_facet Turjanski, Pablo Guillermo
Soba, Alejandro
Suarez, Cecilia
Colombo, Lucas Luis
González, Graciela
Molina, Fernando Víctor
Marshall, Guillermo Ricardo
author_role author
author2 Soba, Alejandro
Suarez, Cecilia
Colombo, Lucas Luis
González, Graciela
Molina, Fernando Víctor
Marshall, Guillermo Ricardo
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv Tumors
Electrochemical treatment
Mathematical modelling
Numerical simulation
topic Tumors
Electrochemical treatment
Mathematical modelling
Numerical simulation
purl_subject.fl_str_mv https://purl.org/becyt/ford/3.2
https://purl.org/becyt/ford/3
dc.description.none.fl_txt_mv Electrochemotherapy (EChT) of tumors consists in the passage of a direct electric current through electrodes inserted locally in the tissue, mainly causing its necrosis. This kind of treatment has been specially applied in China for the last ten years in more than 10 000 patients with good clinical results. The extreme pH changes induced by EChT has been proposed as the main tumor destruction mechanism. In this paper, we describe two different numerical models of EChT (non-buffered and buffered models) that analyze electrolyte diffusive and migratory transport near the anode in a diluted solution, with or without the presence of buffer in the medium. These models use the quasi-one-dimensional Nernst-Planck equations under the hypothesis of electroneutrality and galvanostatic conditions. The equations are solved, for each time step, with finite differences in a fixed domain with a variable mesh that allows greater accuracy near the anodic boundary region. We compare pH distribution predictions derived from the non-buffered and the buffered models with experimental results obtained from collagen I gels and subcutaneous tumors developed in mice, respectively. Simulations predict that, after the EChT treatment, an initial condition with an homogeneous and almost neutral pH becomes extremely acid at the anode, rapidly recovering its neutral value as we move away from it. The strong acidification expands through the anodic area as the EChT dosage increases. These predictions are in good agreement with experimental results. Other qualitative and quantitative comparisons reveal that the non-buffered model has a better correlation with reality than the buffered one. This approach and results open a promising area of research that may help in the elucidation of the real consequences of an EChT applied to tumor tissues. We believe this could have significant implications in the future design of optimal operative conditions and dose planning of this kind of therapy.
Fil: Turjanski, Pablo Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Computación. Laboratorio de Sistemas Complejos; Argentina
Fil: Soba, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Computación. Laboratorio de Sistemas Complejos; Argentina
Fil: Suarez, Cecilia. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Computación. Laboratorio de Sistemas Complejos; Argentina
Fil: Colombo, Lucas Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Oncología "Ángel H. Roffo"; Argentina
Fil: González, Graciela. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Computación. Laboratorio de Sistemas Complejos; Argentina
Fil: Molina, Fernando Víctor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: Marshall, Guillermo Ricardo. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Computación. Laboratorio de Sistemas Complejos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description Electrochemotherapy (EChT) of tumors consists in the passage of a direct electric current through electrodes inserted locally in the tissue, mainly causing its necrosis. This kind of treatment has been specially applied in China for the last ten years in more than 10 000 patients with good clinical results. The extreme pH changes induced by EChT has been proposed as the main tumor destruction mechanism. In this paper, we describe two different numerical models of EChT (non-buffered and buffered models) that analyze electrolyte diffusive and migratory transport near the anode in a diluted solution, with or without the presence of buffer in the medium. These models use the quasi-one-dimensional Nernst-Planck equations under the hypothesis of electroneutrality and galvanostatic conditions. The equations are solved, for each time step, with finite differences in a fixed domain with a variable mesh that allows greater accuracy near the anodic boundary region. We compare pH distribution predictions derived from the non-buffered and the buffered models with experimental results obtained from collagen I gels and subcutaneous tumors developed in mice, respectively. Simulations predict that, after the EChT treatment, an initial condition with an homogeneous and almost neutral pH becomes extremely acid at the anode, rapidly recovering its neutral value as we move away from it. The strong acidification expands through the anodic area as the EChT dosage increases. These predictions are in good agreement with experimental results. Other qualitative and quantitative comparisons reveal that the non-buffered model has a better correlation with reality than the buffered one. This approach and results open a promising area of research that may help in the elucidation of the real consequences of an EChT applied to tumor tissues. We believe this could have significant implications in the future design of optimal operative conditions and dose planning of this kind of therapy.
publishDate 2007
dc.date.none.fl_str_mv 2007-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/163921
Turjanski, Pablo Guillermo; Soba, Alejandro; Suarez, Cecilia; Colombo, Lucas Luis; González, Graciela; et al.; Anodic ph distribution analysis during electrochemical treatment of tumors: numerical simulations; Asociación Argentina de Mecánica Computacional; Mecánica Computacional; XXVI; 40; 12-2007; 3458-3474
2591-3522
CONICET Digital
CONICET
url http://hdl.handle.net/11336/163921
identifier_str_mv Turjanski, Pablo Guillermo; Soba, Alejandro; Suarez, Cecilia; Colombo, Lucas Luis; González, Graciela; et al.; Anodic ph distribution analysis during electrochemical treatment of tumors: numerical simulations; Asociación Argentina de Mecánica Computacional; Mecánica Computacional; XXVI; 40; 12-2007; 3458-3474
2591-3522
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://venus.santafe-conicet.gov.ar/ojs/index.php/mc/article/view/1355
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Asociación Argentina de Mecánica Computacional
publisher.none.fl_str_mv Asociación Argentina de Mecánica Computacional
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268978447122432
score 13.13397