Artemisia: Validation of a deep learning model for automatic breast density categorization
- Autores
- Tajerian, Matías N.; Pesce, Karina; Frangella, Julia; Quiroga, Ezequiel; Boietti, Bruno Rafael; Chico, Maria José; Swiecicki, María Paz; Benitez, Sonia; Rabellino, Martín; Luna, Daniel Roberto
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Background: The aim of this study is to validate a deep learning model for the classification of breast density according to American College of Radiology’s breast density patterns. Methods: A convolutional neural network was developed with 10,229 digital screening mammogram images. Once the network was developed and tested, its performance was evaluated before a group of six professionals, the majority report and a commercial software application. We selected randomly 451 new mammographic images from different studies and patients. The categorization process by professionals was repeated in two stages. Results: The agreement between the convolutional neural network and the majority report was k=0.64 (95% CI: 0.58–0.69) in the first stage and k=0.57 (95% CI: 0.52–0.63) in the second stage. The agreement between the CNN and the commercial software application was k=0.54 (95% CI: 0.48–0.60). In both cases, we observed that the concordances of the CNN were within or above the range of professionals’ concordances values. Conclusions: Considering the internal reference standard (majority report) and the external reference standard (commercial software application), we can affirm the CNN achieved professional level performance.
Fil: Tajerian, Matías N.. Hospital Italiano. Instituto Universitario. Escuela de Medicina; Argentina
Fil: Pesce, Karina. Hospital Italiano. Instituto Universitario. Escuela de Medicina; Argentina
Fil: Frangella, Julia. Hospital Italiano. Instituto Universitario. Escuela de Medicina; Argentina
Fil: Quiroga, Ezequiel. Hospital Italiano. Instituto Universitario. Escuela de Medicina; Argentina
Fil: Boietti, Bruno Rafael. Hospital Italiano. Instituto Universitario. Escuela de Medicina; Argentina
Fil: Chico, Maria José. Hospital Italiano. Instituto Universitario. Escuela de Medicina; Argentina
Fil: Swiecicki, María Paz. Hospital Italiano. Instituto Universitario. Escuela de Medicina; Argentina
Fil: Benitez, Sonia. Hospital Italiano. Instituto Universitario. Escuela de Medicina; Argentina
Fil: Rabellino, Martín. Hospital Italiano. Instituto Universitario. Escuela de Medicina; Argentina
Fil: Luna, Daniel Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional e Ingeniería Biomédica - Hospital Italiano. Instituto de Medicina Traslacional e Ingeniería Biomédica.- Instituto Universitario Hospital Italiano de Buenos Aires. Instituto de Medicina Traslacional e Ingeniería Biomédica; Argentina - Materia
-
ALGORITHM DEVELOPMENT
ARTIFICIAL INTELLIGENCE
BREAST DENSITY
DEEP LEARNING
MEDICAL IMAGING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/161290
Ver los metadatos del registro completo
id |
CONICETDig_e01d863ba5a0667e875559bc8b5a8d30 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/161290 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Artemisia: Validation of a deep learning model for automatic breast density categorizationTajerian, Matías N.Pesce, KarinaFrangella, JuliaQuiroga, EzequielBoietti, Bruno RafaelChico, Maria JoséSwiecicki, María PazBenitez, SoniaRabellino, MartínLuna, Daniel RobertoALGORITHM DEVELOPMENTARTIFICIAL INTELLIGENCEBREAST DENSITYDEEP LEARNINGMEDICAL IMAGINGhttps://purl.org/becyt/ford/3.3https://purl.org/becyt/ford/3Background: The aim of this study is to validate a deep learning model for the classification of breast density according to American College of Radiology’s breast density patterns. Methods: A convolutional neural network was developed with 10,229 digital screening mammogram images. Once the network was developed and tested, its performance was evaluated before a group of six professionals, the majority report and a commercial software application. We selected randomly 451 new mammographic images from different studies and patients. The categorization process by professionals was repeated in two stages. Results: The agreement between the convolutional neural network and the majority report was k=0.64 (95% CI: 0.58–0.69) in the first stage and k=0.57 (95% CI: 0.52–0.63) in the second stage. The agreement between the CNN and the commercial software application was k=0.54 (95% CI: 0.48–0.60). In both cases, we observed that the concordances of the CNN were within or above the range of professionals’ concordances values. Conclusions: Considering the internal reference standard (majority report) and the external reference standard (commercial software application), we can affirm the CNN achieved professional level performance.Fil: Tajerian, Matías N.. Hospital Italiano. Instituto Universitario. Escuela de Medicina; ArgentinaFil: Pesce, Karina. Hospital Italiano. Instituto Universitario. Escuela de Medicina; ArgentinaFil: Frangella, Julia. Hospital Italiano. Instituto Universitario. Escuela de Medicina; ArgentinaFil: Quiroga, Ezequiel. Hospital Italiano. Instituto Universitario. Escuela de Medicina; ArgentinaFil: Boietti, Bruno Rafael. Hospital Italiano. Instituto Universitario. Escuela de Medicina; ArgentinaFil: Chico, Maria José. Hospital Italiano. Instituto Universitario. Escuela de Medicina; ArgentinaFil: Swiecicki, María Paz. Hospital Italiano. Instituto Universitario. Escuela de Medicina; ArgentinaFil: Benitez, Sonia. Hospital Italiano. Instituto Universitario. Escuela de Medicina; ArgentinaFil: Rabellino, Martín. Hospital Italiano. Instituto Universitario. Escuela de Medicina; ArgentinaFil: Luna, Daniel Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional e Ingeniería Biomédica - Hospital Italiano. Instituto de Medicina Traslacional e Ingeniería Biomédica.- Instituto Universitario Hospital Italiano de Buenos Aires. Instituto de Medicina Traslacional e Ingeniería Biomédica; ArgentinaAME Publishing Company2021-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/161290Tajerian, Matías N.; Pesce, Karina; Frangella, Julia; Quiroga, Ezequiel; Boietti, Bruno Rafael; et al.; Artemisia: Validation of a deep learning model for automatic breast density categorization; AME Publishing Company; Journal of Medical Artificial Intelligence; 4; June; 6-2021; 1-92617-2496CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.21037/jmai-20-43info:eu-repo/semantics/altIdentifier/url/https://jmai.amegroups.com/article/view/6302/htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:45:28Zoai:ri.conicet.gov.ar:11336/161290instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:45:28.43CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Artemisia: Validation of a deep learning model for automatic breast density categorization |
title |
Artemisia: Validation of a deep learning model for automatic breast density categorization |
spellingShingle |
Artemisia: Validation of a deep learning model for automatic breast density categorization Tajerian, Matías N. ALGORITHM DEVELOPMENT ARTIFICIAL INTELLIGENCE BREAST DENSITY DEEP LEARNING MEDICAL IMAGING |
title_short |
Artemisia: Validation of a deep learning model for automatic breast density categorization |
title_full |
Artemisia: Validation of a deep learning model for automatic breast density categorization |
title_fullStr |
Artemisia: Validation of a deep learning model for automatic breast density categorization |
title_full_unstemmed |
Artemisia: Validation of a deep learning model for automatic breast density categorization |
title_sort |
Artemisia: Validation of a deep learning model for automatic breast density categorization |
dc.creator.none.fl_str_mv |
Tajerian, Matías N. Pesce, Karina Frangella, Julia Quiroga, Ezequiel Boietti, Bruno Rafael Chico, Maria José Swiecicki, María Paz Benitez, Sonia Rabellino, Martín Luna, Daniel Roberto |
author |
Tajerian, Matías N. |
author_facet |
Tajerian, Matías N. Pesce, Karina Frangella, Julia Quiroga, Ezequiel Boietti, Bruno Rafael Chico, Maria José Swiecicki, María Paz Benitez, Sonia Rabellino, Martín Luna, Daniel Roberto |
author_role |
author |
author2 |
Pesce, Karina Frangella, Julia Quiroga, Ezequiel Boietti, Bruno Rafael Chico, Maria José Swiecicki, María Paz Benitez, Sonia Rabellino, Martín Luna, Daniel Roberto |
author2_role |
author author author author author author author author author |
dc.subject.none.fl_str_mv |
ALGORITHM DEVELOPMENT ARTIFICIAL INTELLIGENCE BREAST DENSITY DEEP LEARNING MEDICAL IMAGING |
topic |
ALGORITHM DEVELOPMENT ARTIFICIAL INTELLIGENCE BREAST DENSITY DEEP LEARNING MEDICAL IMAGING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/3.3 https://purl.org/becyt/ford/3 |
dc.description.none.fl_txt_mv |
Background: The aim of this study is to validate a deep learning model for the classification of breast density according to American College of Radiology’s breast density patterns. Methods: A convolutional neural network was developed with 10,229 digital screening mammogram images. Once the network was developed and tested, its performance was evaluated before a group of six professionals, the majority report and a commercial software application. We selected randomly 451 new mammographic images from different studies and patients. The categorization process by professionals was repeated in two stages. Results: The agreement between the convolutional neural network and the majority report was k=0.64 (95% CI: 0.58–0.69) in the first stage and k=0.57 (95% CI: 0.52–0.63) in the second stage. The agreement between the CNN and the commercial software application was k=0.54 (95% CI: 0.48–0.60). In both cases, we observed that the concordances of the CNN were within or above the range of professionals’ concordances values. Conclusions: Considering the internal reference standard (majority report) and the external reference standard (commercial software application), we can affirm the CNN achieved professional level performance. Fil: Tajerian, Matías N.. Hospital Italiano. Instituto Universitario. Escuela de Medicina; Argentina Fil: Pesce, Karina. Hospital Italiano. Instituto Universitario. Escuela de Medicina; Argentina Fil: Frangella, Julia. Hospital Italiano. Instituto Universitario. Escuela de Medicina; Argentina Fil: Quiroga, Ezequiel. Hospital Italiano. Instituto Universitario. Escuela de Medicina; Argentina Fil: Boietti, Bruno Rafael. Hospital Italiano. Instituto Universitario. Escuela de Medicina; Argentina Fil: Chico, Maria José. Hospital Italiano. Instituto Universitario. Escuela de Medicina; Argentina Fil: Swiecicki, María Paz. Hospital Italiano. Instituto Universitario. Escuela de Medicina; Argentina Fil: Benitez, Sonia. Hospital Italiano. Instituto Universitario. Escuela de Medicina; Argentina Fil: Rabellino, Martín. Hospital Italiano. Instituto Universitario. Escuela de Medicina; Argentina Fil: Luna, Daniel Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional e Ingeniería Biomédica - Hospital Italiano. Instituto de Medicina Traslacional e Ingeniería Biomédica.- Instituto Universitario Hospital Italiano de Buenos Aires. Instituto de Medicina Traslacional e Ingeniería Biomédica; Argentina |
description |
Background: The aim of this study is to validate a deep learning model for the classification of breast density according to American College of Radiology’s breast density patterns. Methods: A convolutional neural network was developed with 10,229 digital screening mammogram images. Once the network was developed and tested, its performance was evaluated before a group of six professionals, the majority report and a commercial software application. We selected randomly 451 new mammographic images from different studies and patients. The categorization process by professionals was repeated in two stages. Results: The agreement between the convolutional neural network and the majority report was k=0.64 (95% CI: 0.58–0.69) in the first stage and k=0.57 (95% CI: 0.52–0.63) in the second stage. The agreement between the CNN and the commercial software application was k=0.54 (95% CI: 0.48–0.60). In both cases, we observed that the concordances of the CNN were within or above the range of professionals’ concordances values. Conclusions: Considering the internal reference standard (majority report) and the external reference standard (commercial software application), we can affirm the CNN achieved professional level performance. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/161290 Tajerian, Matías N.; Pesce, Karina; Frangella, Julia; Quiroga, Ezequiel; Boietti, Bruno Rafael; et al.; Artemisia: Validation of a deep learning model for automatic breast density categorization; AME Publishing Company; Journal of Medical Artificial Intelligence; 4; June; 6-2021; 1-9 2617-2496 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/161290 |
identifier_str_mv |
Tajerian, Matías N.; Pesce, Karina; Frangella, Julia; Quiroga, Ezequiel; Boietti, Bruno Rafael; et al.; Artemisia: Validation of a deep learning model for automatic breast density categorization; AME Publishing Company; Journal of Medical Artificial Intelligence; 4; June; 6-2021; 1-9 2617-2496 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.21037/jmai-20-43 info:eu-repo/semantics/altIdentifier/url/https://jmai.amegroups.com/article/view/6302/html |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
AME Publishing Company |
publisher.none.fl_str_mv |
AME Publishing Company |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613425880104960 |
score |
13.070432 |