Addressing fairness in artificial intelligence for medical imaging
- Autores
- Ricci Lara, María Agustina; Echeveste, Rodrigo Sebastián; Ferrante, Enzo
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A plethora of work has shown that AI systems can systematically and unfairly be biased against certain populations in multiple scenarios. The field of medical imaging, where AI systems are beginning to be increasingly adopted, is no exception. Here we discuss the meaning of fairness in this area and comment on the potential sources of biases, as well as the strategies available to mitigate them. Finally, we analyze the current state of the field, identifying strengths and highlighting areas of vacancy, challenges and opportunities that lie ahead.
Fil: Ricci Lara, María Agustina. Universidad Tecnológica Nacional; Argentina. Hospital Italiano. Departamento de Informática En Salud.; Argentina
Fil: Echeveste, Rodrigo Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Ferrante, Enzo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina - Materia
-
Fairness
Artificial Intelligence
Medical Imaging - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/213281
Ver los metadatos del registro completo
id |
CONICETDig_37d3c12395a33f1109d7d69cef40c832 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/213281 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Addressing fairness in artificial intelligence for medical imagingRicci Lara, María AgustinaEcheveste, Rodrigo SebastiánFerrante, EnzoFairnessArtificial IntelligenceMedical Imaginghttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1A plethora of work has shown that AI systems can systematically and unfairly be biased against certain populations in multiple scenarios. The field of medical imaging, where AI systems are beginning to be increasingly adopted, is no exception. Here we discuss the meaning of fairness in this area and comment on the potential sources of biases, as well as the strategies available to mitigate them. Finally, we analyze the current state of the field, identifying strengths and highlighting areas of vacancy, challenges and opportunities that lie ahead.Fil: Ricci Lara, María Agustina. Universidad Tecnológica Nacional; Argentina. Hospital Italiano. Departamento de Informática En Salud.; ArgentinaFil: Echeveste, Rodrigo Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Ferrante, Enzo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaNature Research2022-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/213281Ricci Lara, María Agustina; Echeveste, Rodrigo Sebastián; Ferrante, Enzo; Addressing fairness in artificial intelligence for medical imaging; Nature Research; Nature Communications; 13; 1; 8-2022; 1-62041-1723CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41467-022-32186-3info:eu-repo/semantics/altIdentifier/doi/10.1038/s41467-022-32186-3info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:38:19Zoai:ri.conicet.gov.ar:11336/213281instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:38:19.655CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Addressing fairness in artificial intelligence for medical imaging |
title |
Addressing fairness in artificial intelligence for medical imaging |
spellingShingle |
Addressing fairness in artificial intelligence for medical imaging Ricci Lara, María Agustina Fairness Artificial Intelligence Medical Imaging |
title_short |
Addressing fairness in artificial intelligence for medical imaging |
title_full |
Addressing fairness in artificial intelligence for medical imaging |
title_fullStr |
Addressing fairness in artificial intelligence for medical imaging |
title_full_unstemmed |
Addressing fairness in artificial intelligence for medical imaging |
title_sort |
Addressing fairness in artificial intelligence for medical imaging |
dc.creator.none.fl_str_mv |
Ricci Lara, María Agustina Echeveste, Rodrigo Sebastián Ferrante, Enzo |
author |
Ricci Lara, María Agustina |
author_facet |
Ricci Lara, María Agustina Echeveste, Rodrigo Sebastián Ferrante, Enzo |
author_role |
author |
author2 |
Echeveste, Rodrigo Sebastián Ferrante, Enzo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Fairness Artificial Intelligence Medical Imaging |
topic |
Fairness Artificial Intelligence Medical Imaging |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A plethora of work has shown that AI systems can systematically and unfairly be biased against certain populations in multiple scenarios. The field of medical imaging, where AI systems are beginning to be increasingly adopted, is no exception. Here we discuss the meaning of fairness in this area and comment on the potential sources of biases, as well as the strategies available to mitigate them. Finally, we analyze the current state of the field, identifying strengths and highlighting areas of vacancy, challenges and opportunities that lie ahead. Fil: Ricci Lara, María Agustina. Universidad Tecnológica Nacional; Argentina. Hospital Italiano. Departamento de Informática En Salud.; Argentina Fil: Echeveste, Rodrigo Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina Fil: Ferrante, Enzo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina |
description |
A plethora of work has shown that AI systems can systematically and unfairly be biased against certain populations in multiple scenarios. The field of medical imaging, where AI systems are beginning to be increasingly adopted, is no exception. Here we discuss the meaning of fairness in this area and comment on the potential sources of biases, as well as the strategies available to mitigate them. Finally, we analyze the current state of the field, identifying strengths and highlighting areas of vacancy, challenges and opportunities that lie ahead. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/213281 Ricci Lara, María Agustina; Echeveste, Rodrigo Sebastián; Ferrante, Enzo; Addressing fairness in artificial intelligence for medical imaging; Nature Research; Nature Communications; 13; 1; 8-2022; 1-6 2041-1723 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/213281 |
identifier_str_mv |
Ricci Lara, María Agustina; Echeveste, Rodrigo Sebastián; Ferrante, Enzo; Addressing fairness in artificial intelligence for medical imaging; Nature Research; Nature Communications; 13; 1; 8-2022; 1-6 2041-1723 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41467-022-32186-3 info:eu-repo/semantics/altIdentifier/doi/10.1038/s41467-022-32186-3 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Nature Research |
publisher.none.fl_str_mv |
Nature Research |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614405285740544 |
score |
13.070432 |