A detailed characterization of complex networks using Information Theory
- Autores
- Freitas, Cristopher G. S.; Aquino, Andre L. L.; Ramos, Heitor S.; Frery, Alejandro César; Rosso, Osvaldo Aníbal
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Understanding the structure and the dynamics of networks is of paramount importance for manyscientific fields that rely on network science. Complex network theory provides a variety of features thathelp in the evaluation of network behavior. However, such analysis can be confusing and misleading asthere are many intrinsic properties for each network metric. Alternatively, Information Theory methodshave gained the spotlight because of their ability to create a quantitative and robust characterizationof such networks. In this work, we use two Information Theory quantifiers, namely Network Entropyand Network Fisher Information Measure, to analyzing those networks. Our approach detects nontrivialcharacteristics of complex networks such as the transition present in the Watts-Strogatz modelfrom k-ring to random graphs; the phase transition from a disconnected to an almost surely connectednetwork when we increase the linking probability of Erdős-Rényi model; distinct phases of scale-freenetworks when considering a non-linear preferential attachment, fitness, and aging features alongsidethe configuration model with a pure power-law degree distribution. Finally, we analyze the numericalresults for real networks, contrasting our findings with traditional complex network methods. Inconclusion, we present an efficient method that ignites the debate on network characterization.
Fil: Freitas, Cristopher G. S.. Universidade Federal de Alagoas; Brasil
Fil: Aquino, Andre L. L.. Universidade Federal de Alagoas; Brasil
Fil: Ramos, Heitor S.. Universidade Federal de Minas Gerais; Brasil
Fil: Frery, Alejandro César. Universidade Federal de Alagoas; Brasil
Fil: Rosso, Osvaldo Aníbal. Instituto Universitario del Hospital Italiano de Buenos Aires; Argentina. Universidade Federal de Alagoas; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
COMPLEX NETWORKS
INFORMATION THEORY
SHANNON ENTROPY
FISHER INFORMATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/103700
Ver los metadatos del registro completo
id |
CONICETDig_de6bb3209c182684de6598c6995fcd0e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/103700 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A detailed characterization of complex networks using Information TheoryFreitas, Cristopher G. S.Aquino, Andre L. L.Ramos, Heitor S.Frery, Alejandro CésarRosso, Osvaldo AníbalCOMPLEX NETWORKSINFORMATION THEORYSHANNON ENTROPYFISHER INFORMATIONhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Understanding the structure and the dynamics of networks is of paramount importance for manyscientific fields that rely on network science. Complex network theory provides a variety of features thathelp in the evaluation of network behavior. However, such analysis can be confusing and misleading asthere are many intrinsic properties for each network metric. Alternatively, Information Theory methodshave gained the spotlight because of their ability to create a quantitative and robust characterizationof such networks. In this work, we use two Information Theory quantifiers, namely Network Entropyand Network Fisher Information Measure, to analyzing those networks. Our approach detects nontrivialcharacteristics of complex networks such as the transition present in the Watts-Strogatz modelfrom k-ring to random graphs; the phase transition from a disconnected to an almost surely connectednetwork when we increase the linking probability of Erdős-Rényi model; distinct phases of scale-freenetworks when considering a non-linear preferential attachment, fitness, and aging features alongsidethe configuration model with a pure power-law degree distribution. Finally, we analyze the numericalresults for real networks, contrasting our findings with traditional complex network methods. Inconclusion, we present an efficient method that ignites the debate on network characterization.Fil: Freitas, Cristopher G. S.. Universidade Federal de Alagoas; BrasilFil: Aquino, Andre L. L.. Universidade Federal de Alagoas; BrasilFil: Ramos, Heitor S.. Universidade Federal de Minas Gerais; BrasilFil: Frery, Alejandro César. Universidade Federal de Alagoas; BrasilFil: Rosso, Osvaldo Aníbal. Instituto Universitario del Hospital Italiano de Buenos Aires; Argentina. Universidade Federal de Alagoas; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaNature Publishing Group2019-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/103700Freitas, Cristopher G. S.; Aquino, Andre L. L.; Ramos, Heitor S.; Frery, Alejandro César; Rosso, Osvaldo Aníbal; A detailed characterization of complex networks using Information Theory; Nature Publishing Group; Scientific Reports; 9; 1; 11-2019; 1-122045-2322CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.nature.com/articles/s41598-019-53167-5info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-019-53167-5info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:49:04Zoai:ri.conicet.gov.ar:11336/103700instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:49:04.709CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A detailed characterization of complex networks using Information Theory |
title |
A detailed characterization of complex networks using Information Theory |
spellingShingle |
A detailed characterization of complex networks using Information Theory Freitas, Cristopher G. S. COMPLEX NETWORKS INFORMATION THEORY SHANNON ENTROPY FISHER INFORMATION |
title_short |
A detailed characterization of complex networks using Information Theory |
title_full |
A detailed characterization of complex networks using Information Theory |
title_fullStr |
A detailed characterization of complex networks using Information Theory |
title_full_unstemmed |
A detailed characterization of complex networks using Information Theory |
title_sort |
A detailed characterization of complex networks using Information Theory |
dc.creator.none.fl_str_mv |
Freitas, Cristopher G. S. Aquino, Andre L. L. Ramos, Heitor S. Frery, Alejandro César Rosso, Osvaldo Aníbal |
author |
Freitas, Cristopher G. S. |
author_facet |
Freitas, Cristopher G. S. Aquino, Andre L. L. Ramos, Heitor S. Frery, Alejandro César Rosso, Osvaldo Aníbal |
author_role |
author |
author2 |
Aquino, Andre L. L. Ramos, Heitor S. Frery, Alejandro César Rosso, Osvaldo Aníbal |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
COMPLEX NETWORKS INFORMATION THEORY SHANNON ENTROPY FISHER INFORMATION |
topic |
COMPLEX NETWORKS INFORMATION THEORY SHANNON ENTROPY FISHER INFORMATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Understanding the structure and the dynamics of networks is of paramount importance for manyscientific fields that rely on network science. Complex network theory provides a variety of features thathelp in the evaluation of network behavior. However, such analysis can be confusing and misleading asthere are many intrinsic properties for each network metric. Alternatively, Information Theory methodshave gained the spotlight because of their ability to create a quantitative and robust characterizationof such networks. In this work, we use two Information Theory quantifiers, namely Network Entropyand Network Fisher Information Measure, to analyzing those networks. Our approach detects nontrivialcharacteristics of complex networks such as the transition present in the Watts-Strogatz modelfrom k-ring to random graphs; the phase transition from a disconnected to an almost surely connectednetwork when we increase the linking probability of Erdős-Rényi model; distinct phases of scale-freenetworks when considering a non-linear preferential attachment, fitness, and aging features alongsidethe configuration model with a pure power-law degree distribution. Finally, we analyze the numericalresults for real networks, contrasting our findings with traditional complex network methods. Inconclusion, we present an efficient method that ignites the debate on network characterization. Fil: Freitas, Cristopher G. S.. Universidade Federal de Alagoas; Brasil Fil: Aquino, Andre L. L.. Universidade Federal de Alagoas; Brasil Fil: Ramos, Heitor S.. Universidade Federal de Minas Gerais; Brasil Fil: Frery, Alejandro César. Universidade Federal de Alagoas; Brasil Fil: Rosso, Osvaldo Aníbal. Instituto Universitario del Hospital Italiano de Buenos Aires; Argentina. Universidade Federal de Alagoas; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Understanding the structure and the dynamics of networks is of paramount importance for manyscientific fields that rely on network science. Complex network theory provides a variety of features thathelp in the evaluation of network behavior. However, such analysis can be confusing and misleading asthere are many intrinsic properties for each network metric. Alternatively, Information Theory methodshave gained the spotlight because of their ability to create a quantitative and robust characterizationof such networks. In this work, we use two Information Theory quantifiers, namely Network Entropyand Network Fisher Information Measure, to analyzing those networks. Our approach detects nontrivialcharacteristics of complex networks such as the transition present in the Watts-Strogatz modelfrom k-ring to random graphs; the phase transition from a disconnected to an almost surely connectednetwork when we increase the linking probability of Erdős-Rényi model; distinct phases of scale-freenetworks when considering a non-linear preferential attachment, fitness, and aging features alongsidethe configuration model with a pure power-law degree distribution. Finally, we analyze the numericalresults for real networks, contrasting our findings with traditional complex network methods. Inconclusion, we present an efficient method that ignites the debate on network characterization. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/103700 Freitas, Cristopher G. S.; Aquino, Andre L. L.; Ramos, Heitor S.; Frery, Alejandro César; Rosso, Osvaldo Aníbal; A detailed characterization of complex networks using Information Theory; Nature Publishing Group; Scientific Reports; 9; 1; 11-2019; 1-12 2045-2322 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/103700 |
identifier_str_mv |
Freitas, Cristopher G. S.; Aquino, Andre L. L.; Ramos, Heitor S.; Frery, Alejandro César; Rosso, Osvaldo Aníbal; A detailed characterization of complex networks using Information Theory; Nature Publishing Group; Scientific Reports; 9; 1; 11-2019; 1-12 2045-2322 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.nature.com/articles/s41598-019-53167-5 info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-019-53167-5 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Nature Publishing Group |
publisher.none.fl_str_mv |
Nature Publishing Group |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268951897178112 |
score |
13.13397 |