Information flow in multi-scale dynamical systems using ordinal symbolic analysis

Autores
Pulido, Manuel Arturo; Rosa, Santiago; van Leeuwen, Peter Jan
Año de publicación
2019
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
In this work, information flow quantifiers between variables of multi-scale dynamical systems simulating atmospheric processes are evaluated in non-linear and non-gaussian statistical regimes. The atmosphere is a spatially extended, highly non-linear dynamical system with complex interactions between the different dynamical scales, as well as between the different physical processes involved in it. We evaluate whether conditional mutual information and transfer entropy are able to detect and quantify causal interactions between large-scale and small-scale dynamics. As simple prototype models of these atmospheric interactions, we use a two-scale Lorenz 96 model and a two dimensional barotropic model. In order to obtain the information quantifiers, temporal series from the experiments are examined with ordinal symbolic analysis using the Band-Pompe symbolic reduction in the data signal and using the Kraskov-Stogbauer-Grassberger method to estimate mutual information using k-nearest neighbors. Comparing different experiments, we show that the interactions between small-scale variables and large-scale variables may introduce spatial long-range information flows. We also found that conditional mutual information is able to detect energy and enstrophy cascades in the barotropic model. Ordinal symbolic analysis allows us to obtain robust measures and may be efficiently applied to long temporal series with correlations between several processes. We conclude that information measures are useful tools to establish observational information flows in the atmosphere. These tools may be helpful to quantify the role of small - scale processes and constraining stochastic parameterizations.
Fil: Pulido, Manuel Arturo. University of Reading; Reino Unido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina
Fil: Rosa, Santiago. Universidad Nacional de Córdoba; Argentina
Fil: van Leeuwen, Peter Jan. University of Reading; Reino Unido
EGU General Assembly 2019
Vinna
Austria
European Geosciences Union
Materia
TRANSFER ENTROPY
MUTUAL INFORMATION
SHANNON INFORMATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/133384

id CONICETDig_4f26a392f9a3eaad164bcdbdeaff8379
oai_identifier_str oai:ri.conicet.gov.ar:11336/133384
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Information flow in multi-scale dynamical systems using ordinal symbolic analysisPulido, Manuel ArturoRosa, Santiagovan Leeuwen, Peter JanTRANSFER ENTROPYMUTUAL INFORMATIONSHANNON INFORMATIONhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1In this work, information flow quantifiers between variables of multi-scale dynamical systems simulating atmospheric processes are evaluated in non-linear and non-gaussian statistical regimes. The atmosphere is a spatially extended, highly non-linear dynamical system with complex interactions between the different dynamical scales, as well as between the different physical processes involved in it. We evaluate whether conditional mutual information and transfer entropy are able to detect and quantify causal interactions between large-scale and small-scale dynamics. As simple prototype models of these atmospheric interactions, we use a two-scale Lorenz 96 model and a two dimensional barotropic model. In order to obtain the information quantifiers, temporal series from the experiments are examined with ordinal symbolic analysis using the Band-Pompe symbolic reduction in the data signal and using the Kraskov-Stogbauer-Grassberger method to estimate mutual information using k-nearest neighbors. Comparing different experiments, we show that the interactions between small-scale variables and large-scale variables may introduce spatial long-range information flows. We also found that conditional mutual information is able to detect energy and enstrophy cascades in the barotropic model. Ordinal symbolic analysis allows us to obtain robust measures and may be efficiently applied to long temporal series with correlations between several processes. We conclude that information measures are useful tools to establish observational information flows in the atmosphere. These tools may be helpful to quantify the role of small - scale processes and constraining stochastic parameterizations.Fil: Pulido, Manuel Arturo. University of Reading; Reino Unido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; ArgentinaFil: Rosa, Santiago. Universidad Nacional de Córdoba; ArgentinaFil: van Leeuwen, Peter Jan. University of Reading; Reino UnidoEGU General Assembly 2019VinnaAustriaEuropean Geosciences UnionCopernicus Publications2019info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectCongresoJournalhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/133384Information flow in multi-scale dynamical systems using ordinal symbolic analysis; EGU General Assembly 2019; Vinna; Austria; 2019; 1-11029-70061607-7962CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://meetingorganizer.copernicus.org/EGU2019/EGU2019-5228.pdfinfo:eu-repo/semantics/altIdentifier/url/https://meetingorganizer.copernicus.org/EGU2019/sessionprogrammeInternacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:21:29Zoai:ri.conicet.gov.ar:11336/133384instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:21:29.284CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Information flow in multi-scale dynamical systems using ordinal symbolic analysis
title Information flow in multi-scale dynamical systems using ordinal symbolic analysis
spellingShingle Information flow in multi-scale dynamical systems using ordinal symbolic analysis
Pulido, Manuel Arturo
TRANSFER ENTROPY
MUTUAL INFORMATION
SHANNON INFORMATION
title_short Information flow in multi-scale dynamical systems using ordinal symbolic analysis
title_full Information flow in multi-scale dynamical systems using ordinal symbolic analysis
title_fullStr Information flow in multi-scale dynamical systems using ordinal symbolic analysis
title_full_unstemmed Information flow in multi-scale dynamical systems using ordinal symbolic analysis
title_sort Information flow in multi-scale dynamical systems using ordinal symbolic analysis
dc.creator.none.fl_str_mv Pulido, Manuel Arturo
Rosa, Santiago
van Leeuwen, Peter Jan
author Pulido, Manuel Arturo
author_facet Pulido, Manuel Arturo
Rosa, Santiago
van Leeuwen, Peter Jan
author_role author
author2 Rosa, Santiago
van Leeuwen, Peter Jan
author2_role author
author
dc.subject.none.fl_str_mv TRANSFER ENTROPY
MUTUAL INFORMATION
SHANNON INFORMATION
topic TRANSFER ENTROPY
MUTUAL INFORMATION
SHANNON INFORMATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this work, information flow quantifiers between variables of multi-scale dynamical systems simulating atmospheric processes are evaluated in non-linear and non-gaussian statistical regimes. The atmosphere is a spatially extended, highly non-linear dynamical system with complex interactions between the different dynamical scales, as well as between the different physical processes involved in it. We evaluate whether conditional mutual information and transfer entropy are able to detect and quantify causal interactions between large-scale and small-scale dynamics. As simple prototype models of these atmospheric interactions, we use a two-scale Lorenz 96 model and a two dimensional barotropic model. In order to obtain the information quantifiers, temporal series from the experiments are examined with ordinal symbolic analysis using the Band-Pompe symbolic reduction in the data signal and using the Kraskov-Stogbauer-Grassberger method to estimate mutual information using k-nearest neighbors. Comparing different experiments, we show that the interactions between small-scale variables and large-scale variables may introduce spatial long-range information flows. We also found that conditional mutual information is able to detect energy and enstrophy cascades in the barotropic model. Ordinal symbolic analysis allows us to obtain robust measures and may be efficiently applied to long temporal series with correlations between several processes. We conclude that information measures are useful tools to establish observational information flows in the atmosphere. These tools may be helpful to quantify the role of small - scale processes and constraining stochastic parameterizations.
Fil: Pulido, Manuel Arturo. University of Reading; Reino Unido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina
Fil: Rosa, Santiago. Universidad Nacional de Córdoba; Argentina
Fil: van Leeuwen, Peter Jan. University of Reading; Reino Unido
EGU General Assembly 2019
Vinna
Austria
European Geosciences Union
description In this work, information flow quantifiers between variables of multi-scale dynamical systems simulating atmospheric processes are evaluated in non-linear and non-gaussian statistical regimes. The atmosphere is a spatially extended, highly non-linear dynamical system with complex interactions between the different dynamical scales, as well as between the different physical processes involved in it. We evaluate whether conditional mutual information and transfer entropy are able to detect and quantify causal interactions between large-scale and small-scale dynamics. As simple prototype models of these atmospheric interactions, we use a two-scale Lorenz 96 model and a two dimensional barotropic model. In order to obtain the information quantifiers, temporal series from the experiments are examined with ordinal symbolic analysis using the Band-Pompe symbolic reduction in the data signal and using the Kraskov-Stogbauer-Grassberger method to estimate mutual information using k-nearest neighbors. Comparing different experiments, we show that the interactions between small-scale variables and large-scale variables may introduce spatial long-range information flows. We also found that conditional mutual information is able to detect energy and enstrophy cascades in the barotropic model. Ordinal symbolic analysis allows us to obtain robust measures and may be efficiently applied to long temporal series with correlations between several processes. We conclude that information measures are useful tools to establish observational information flows in the atmosphere. These tools may be helpful to quantify the role of small - scale processes and constraining stochastic parameterizations.
publishDate 2019
dc.date.none.fl_str_mv 2019
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/conferenceObject
Congreso
Journal
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
status_str publishedVersion
format conferenceObject
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/133384
Information flow in multi-scale dynamical systems using ordinal symbolic analysis; EGU General Assembly 2019; Vinna; Austria; 2019; 1-1
1029-7006
1607-7962
CONICET Digital
CONICET
url http://hdl.handle.net/11336/133384
identifier_str_mv Information flow in multi-scale dynamical systems using ordinal symbolic analysis; EGU General Assembly 2019; Vinna; Austria; 2019; 1-1
1029-7006
1607-7962
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://meetingorganizer.copernicus.org/EGU2019/EGU2019-5228.pdf
info:eu-repo/semantics/altIdentifier/url/https://meetingorganizer.copernicus.org/EGU2019/sessionprogramme
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.coverage.none.fl_str_mv Internacional
dc.publisher.none.fl_str_mv Copernicus Publications
publisher.none.fl_str_mv Copernicus Publications
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842981179932803072
score 12.48226