Information flow in multi-scale dynamical systems using ordinal symbolic analysis
- Autores
- Pulido, Manuel Arturo; Rosa, Santiago; van Leeuwen, Peter Jan
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- In this work, information flow quantifiers between variables of multi-scale dynamical systems simulating atmospheric processes are evaluated in non-linear and non-gaussian statistical regimes. The atmosphere is a spatially extended, highly non-linear dynamical system with complex interactions between the different dynamical scales, as well as between the different physical processes involved in it. We evaluate whether conditional mutual information and transfer entropy are able to detect and quantify causal interactions between large-scale and small-scale dynamics. As simple prototype models of these atmospheric interactions, we use a two-scale Lorenz 96 model and a two dimensional barotropic model. In order to obtain the information quantifiers, temporal series from the experiments are examined with ordinal symbolic analysis using the Band-Pompe symbolic reduction in the data signal and using the Kraskov-Stogbauer-Grassberger method to estimate mutual information using k-nearest neighbors. Comparing different experiments, we show that the interactions between small-scale variables and large-scale variables may introduce spatial long-range information flows. We also found that conditional mutual information is able to detect energy and enstrophy cascades in the barotropic model. Ordinal symbolic analysis allows us to obtain robust measures and may be efficiently applied to long temporal series with correlations between several processes. We conclude that information measures are useful tools to establish observational information flows in the atmosphere. These tools may be helpful to quantify the role of small - scale processes and constraining stochastic parameterizations.
Fil: Pulido, Manuel Arturo. University of Reading; Reino Unido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina
Fil: Rosa, Santiago. Universidad Nacional de Córdoba; Argentina
Fil: van Leeuwen, Peter Jan. University of Reading; Reino Unido
EGU General Assembly 2019
Vinna
Austria
European Geosciences Union - Materia
-
TRANSFER ENTROPY
MUTUAL INFORMATION
SHANNON INFORMATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/133384
Ver los metadatos del registro completo
id |
CONICETDig_4f26a392f9a3eaad164bcdbdeaff8379 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/133384 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Information flow in multi-scale dynamical systems using ordinal symbolic analysisPulido, Manuel ArturoRosa, Santiagovan Leeuwen, Peter JanTRANSFER ENTROPYMUTUAL INFORMATIONSHANNON INFORMATIONhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1In this work, information flow quantifiers between variables of multi-scale dynamical systems simulating atmospheric processes are evaluated in non-linear and non-gaussian statistical regimes. The atmosphere is a spatially extended, highly non-linear dynamical system with complex interactions between the different dynamical scales, as well as between the different physical processes involved in it. We evaluate whether conditional mutual information and transfer entropy are able to detect and quantify causal interactions between large-scale and small-scale dynamics. As simple prototype models of these atmospheric interactions, we use a two-scale Lorenz 96 model and a two dimensional barotropic model. In order to obtain the information quantifiers, temporal series from the experiments are examined with ordinal symbolic analysis using the Band-Pompe symbolic reduction in the data signal and using the Kraskov-Stogbauer-Grassberger method to estimate mutual information using k-nearest neighbors. Comparing different experiments, we show that the interactions between small-scale variables and large-scale variables may introduce spatial long-range information flows. We also found that conditional mutual information is able to detect energy and enstrophy cascades in the barotropic model. Ordinal symbolic analysis allows us to obtain robust measures and may be efficiently applied to long temporal series with correlations between several processes. We conclude that information measures are useful tools to establish observational information flows in the atmosphere. These tools may be helpful to quantify the role of small - scale processes and constraining stochastic parameterizations.Fil: Pulido, Manuel Arturo. University of Reading; Reino Unido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; ArgentinaFil: Rosa, Santiago. Universidad Nacional de Córdoba; ArgentinaFil: van Leeuwen, Peter Jan. University of Reading; Reino UnidoEGU General Assembly 2019VinnaAustriaEuropean Geosciences UnionCopernicus Publications2019info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectCongresoJournalhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/133384Information flow in multi-scale dynamical systems using ordinal symbolic analysis; EGU General Assembly 2019; Vinna; Austria; 2019; 1-11029-70061607-7962CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://meetingorganizer.copernicus.org/EGU2019/EGU2019-5228.pdfinfo:eu-repo/semantics/altIdentifier/url/https://meetingorganizer.copernicus.org/EGU2019/sessionprogrammeInternacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:21:29Zoai:ri.conicet.gov.ar:11336/133384instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:21:29.284CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Information flow in multi-scale dynamical systems using ordinal symbolic analysis |
title |
Information flow in multi-scale dynamical systems using ordinal symbolic analysis |
spellingShingle |
Information flow in multi-scale dynamical systems using ordinal symbolic analysis Pulido, Manuel Arturo TRANSFER ENTROPY MUTUAL INFORMATION SHANNON INFORMATION |
title_short |
Information flow in multi-scale dynamical systems using ordinal symbolic analysis |
title_full |
Information flow in multi-scale dynamical systems using ordinal symbolic analysis |
title_fullStr |
Information flow in multi-scale dynamical systems using ordinal symbolic analysis |
title_full_unstemmed |
Information flow in multi-scale dynamical systems using ordinal symbolic analysis |
title_sort |
Information flow in multi-scale dynamical systems using ordinal symbolic analysis |
dc.creator.none.fl_str_mv |
Pulido, Manuel Arturo Rosa, Santiago van Leeuwen, Peter Jan |
author |
Pulido, Manuel Arturo |
author_facet |
Pulido, Manuel Arturo Rosa, Santiago van Leeuwen, Peter Jan |
author_role |
author |
author2 |
Rosa, Santiago van Leeuwen, Peter Jan |
author2_role |
author author |
dc.subject.none.fl_str_mv |
TRANSFER ENTROPY MUTUAL INFORMATION SHANNON INFORMATION |
topic |
TRANSFER ENTROPY MUTUAL INFORMATION SHANNON INFORMATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this work, information flow quantifiers between variables of multi-scale dynamical systems simulating atmospheric processes are evaluated in non-linear and non-gaussian statistical regimes. The atmosphere is a spatially extended, highly non-linear dynamical system with complex interactions between the different dynamical scales, as well as between the different physical processes involved in it. We evaluate whether conditional mutual information and transfer entropy are able to detect and quantify causal interactions between large-scale and small-scale dynamics. As simple prototype models of these atmospheric interactions, we use a two-scale Lorenz 96 model and a two dimensional barotropic model. In order to obtain the information quantifiers, temporal series from the experiments are examined with ordinal symbolic analysis using the Band-Pompe symbolic reduction in the data signal and using the Kraskov-Stogbauer-Grassberger method to estimate mutual information using k-nearest neighbors. Comparing different experiments, we show that the interactions between small-scale variables and large-scale variables may introduce spatial long-range information flows. We also found that conditional mutual information is able to detect energy and enstrophy cascades in the barotropic model. Ordinal symbolic analysis allows us to obtain robust measures and may be efficiently applied to long temporal series with correlations between several processes. We conclude that information measures are useful tools to establish observational information flows in the atmosphere. These tools may be helpful to quantify the role of small - scale processes and constraining stochastic parameterizations. Fil: Pulido, Manuel Arturo. University of Reading; Reino Unido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina Fil: Rosa, Santiago. Universidad Nacional de Córdoba; Argentina Fil: van Leeuwen, Peter Jan. University of Reading; Reino Unido EGU General Assembly 2019 Vinna Austria European Geosciences Union |
description |
In this work, information flow quantifiers between variables of multi-scale dynamical systems simulating atmospheric processes are evaluated in non-linear and non-gaussian statistical regimes. The atmosphere is a spatially extended, highly non-linear dynamical system with complex interactions between the different dynamical scales, as well as between the different physical processes involved in it. We evaluate whether conditional mutual information and transfer entropy are able to detect and quantify causal interactions between large-scale and small-scale dynamics. As simple prototype models of these atmospheric interactions, we use a two-scale Lorenz 96 model and a two dimensional barotropic model. In order to obtain the information quantifiers, temporal series from the experiments are examined with ordinal symbolic analysis using the Band-Pompe symbolic reduction in the data signal and using the Kraskov-Stogbauer-Grassberger method to estimate mutual information using k-nearest neighbors. Comparing different experiments, we show that the interactions between small-scale variables and large-scale variables may introduce spatial long-range information flows. We also found that conditional mutual information is able to detect energy and enstrophy cascades in the barotropic model. Ordinal symbolic analysis allows us to obtain robust measures and may be efficiently applied to long temporal series with correlations between several processes. We conclude that information measures are useful tools to establish observational information flows in the atmosphere. These tools may be helpful to quantify the role of small - scale processes and constraining stochastic parameterizations. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/conferenceObject Congreso Journal http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
status_str |
publishedVersion |
format |
conferenceObject |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/133384 Information flow in multi-scale dynamical systems using ordinal symbolic analysis; EGU General Assembly 2019; Vinna; Austria; 2019; 1-1 1029-7006 1607-7962 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/133384 |
identifier_str_mv |
Information flow in multi-scale dynamical systems using ordinal symbolic analysis; EGU General Assembly 2019; Vinna; Austria; 2019; 1-1 1029-7006 1607-7962 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://meetingorganizer.copernicus.org/EGU2019/EGU2019-5228.pdf info:eu-repo/semantics/altIdentifier/url/https://meetingorganizer.copernicus.org/EGU2019/sessionprogramme |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.coverage.none.fl_str_mv |
Internacional |
dc.publisher.none.fl_str_mv |
Copernicus Publications |
publisher.none.fl_str_mv |
Copernicus Publications |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842981179932803072 |
score |
12.48226 |