Quantifying instabilities in Financial Markets
- Autores
- Gonçalves, Bruna Amin; Carpi, Laura; Rosso, Osvaldo Aníbal; Ravetti, Martín G.; Atman, A. P. F.
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Financial global crisis has devastating impacts to economies since early XX century and continues to impose increasing collateral damages for governments, enterprises, and society in general. Up to now, all efforts to obtain efficient methods to predict these events have been disappointing. However, the quest for a robust estimator of the degree of the market efficiency, or even, a crisis predictor, is still one of the most studied subjects in the field. We present here an original contribution that combines Information Theory with graph concepts, to study the return rate series of 32 global trade markets. Specifically, we propose a very simple quantifier that shows to be highly correlated with global financial instability periods, being also a good estimator of the market crisis risk and market resilience. We show that this estimator displays striking results when applied to countries that played central roles during the last major global market crisis. The simplicity and effectiveness of our quantifier allow us to anticipate its use in a wide range of disciplines.
Fil: Gonçalves, Bruna Amin. Centro Federal de Educação Tecnológica de Minas Gerais. Programa de Pós Graduação em Modelagem Matemática e Computacional; Brasil
Fil: Carpi, Laura. Universidad Politécnica de Catalunya; España
Fil: Rosso, Osvaldo Aníbal. Universidade Federal de Alagoas; Brasil. Hospital Italiano. Departamento de Informática En Salud.; Argentina. Universidad de Los Andes.; Chile
Fil: Ravetti, Martín G.. Universidade Federal de Minas Gerais; Brasil
Fil: Atman, A. P. F.. Centro Federal de Educação Tecnológica de Minas Gerais. Programa de Pós Graduação em Modelagem Matemática e Computacional; Brasil - Materia
-
CRISIS
FISHER INFORMATION
INFORMATION THEORY
SHANNON ENTROPY
VISIBILITY GRAPH METHOD - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/110597
Ver los metadatos del registro completo
id |
CONICETDig_5159528e113e293a45a5542c14859da6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/110597 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Quantifying instabilities in Financial MarketsGonçalves, Bruna AminCarpi, LauraRosso, Osvaldo AníbalRavetti, Martín G.Atman, A. P. F.CRISISFISHER INFORMATIONINFORMATION THEORYSHANNON ENTROPYVISIBILITY GRAPH METHODhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Financial global crisis has devastating impacts to economies since early XX century and continues to impose increasing collateral damages for governments, enterprises, and society in general. Up to now, all efforts to obtain efficient methods to predict these events have been disappointing. However, the quest for a robust estimator of the degree of the market efficiency, or even, a crisis predictor, is still one of the most studied subjects in the field. We present here an original contribution that combines Information Theory with graph concepts, to study the return rate series of 32 global trade markets. Specifically, we propose a very simple quantifier that shows to be highly correlated with global financial instability periods, being also a good estimator of the market crisis risk and market resilience. We show that this estimator displays striking results when applied to countries that played central roles during the last major global market crisis. The simplicity and effectiveness of our quantifier allow us to anticipate its use in a wide range of disciplines.Fil: Gonçalves, Bruna Amin. Centro Federal de Educação Tecnológica de Minas Gerais. Programa de Pós Graduação em Modelagem Matemática e Computacional; BrasilFil: Carpi, Laura. Universidad Politécnica de Catalunya; EspañaFil: Rosso, Osvaldo Aníbal. Universidade Federal de Alagoas; Brasil. Hospital Italiano. Departamento de Informática En Salud.; Argentina. Universidad de Los Andes.; ChileFil: Ravetti, Martín G.. Universidade Federal de Minas Gerais; BrasilFil: Atman, A. P. F.. Centro Federal de Educação Tecnológica de Minas Gerais. Programa de Pós Graduação em Modelagem Matemática e Computacional; BrasilElsevier Science2019-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/110597Gonçalves, Bruna Amin; Carpi, Laura; Rosso, Osvaldo Aníbal; Ravetti, Martín G.; Atman, A. P. F.; Quantifying instabilities in Financial Markets; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 525; 7-2019; 606-6150378-4371CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2019.03.029info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1704.05499info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0378437119302560info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:26:29Zoai:ri.conicet.gov.ar:11336/110597instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:26:29.388CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Quantifying instabilities in Financial Markets |
title |
Quantifying instabilities in Financial Markets |
spellingShingle |
Quantifying instabilities in Financial Markets Gonçalves, Bruna Amin CRISIS FISHER INFORMATION INFORMATION THEORY SHANNON ENTROPY VISIBILITY GRAPH METHOD |
title_short |
Quantifying instabilities in Financial Markets |
title_full |
Quantifying instabilities in Financial Markets |
title_fullStr |
Quantifying instabilities in Financial Markets |
title_full_unstemmed |
Quantifying instabilities in Financial Markets |
title_sort |
Quantifying instabilities in Financial Markets |
dc.creator.none.fl_str_mv |
Gonçalves, Bruna Amin Carpi, Laura Rosso, Osvaldo Aníbal Ravetti, Martín G. Atman, A. P. F. |
author |
Gonçalves, Bruna Amin |
author_facet |
Gonçalves, Bruna Amin Carpi, Laura Rosso, Osvaldo Aníbal Ravetti, Martín G. Atman, A. P. F. |
author_role |
author |
author2 |
Carpi, Laura Rosso, Osvaldo Aníbal Ravetti, Martín G. Atman, A. P. F. |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
CRISIS FISHER INFORMATION INFORMATION THEORY SHANNON ENTROPY VISIBILITY GRAPH METHOD |
topic |
CRISIS FISHER INFORMATION INFORMATION THEORY SHANNON ENTROPY VISIBILITY GRAPH METHOD |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Financial global crisis has devastating impacts to economies since early XX century and continues to impose increasing collateral damages for governments, enterprises, and society in general. Up to now, all efforts to obtain efficient methods to predict these events have been disappointing. However, the quest for a robust estimator of the degree of the market efficiency, or even, a crisis predictor, is still one of the most studied subjects in the field. We present here an original contribution that combines Information Theory with graph concepts, to study the return rate series of 32 global trade markets. Specifically, we propose a very simple quantifier that shows to be highly correlated with global financial instability periods, being also a good estimator of the market crisis risk and market resilience. We show that this estimator displays striking results when applied to countries that played central roles during the last major global market crisis. The simplicity and effectiveness of our quantifier allow us to anticipate its use in a wide range of disciplines. Fil: Gonçalves, Bruna Amin. Centro Federal de Educação Tecnológica de Minas Gerais. Programa de Pós Graduação em Modelagem Matemática e Computacional; Brasil Fil: Carpi, Laura. Universidad Politécnica de Catalunya; España Fil: Rosso, Osvaldo Aníbal. Universidade Federal de Alagoas; Brasil. Hospital Italiano. Departamento de Informática En Salud.; Argentina. Universidad de Los Andes.; Chile Fil: Ravetti, Martín G.. Universidade Federal de Minas Gerais; Brasil Fil: Atman, A. P. F.. Centro Federal de Educação Tecnológica de Minas Gerais. Programa de Pós Graduação em Modelagem Matemática e Computacional; Brasil |
description |
Financial global crisis has devastating impacts to economies since early XX century and continues to impose increasing collateral damages for governments, enterprises, and society in general. Up to now, all efforts to obtain efficient methods to predict these events have been disappointing. However, the quest for a robust estimator of the degree of the market efficiency, or even, a crisis predictor, is still one of the most studied subjects in the field. We present here an original contribution that combines Information Theory with graph concepts, to study the return rate series of 32 global trade markets. Specifically, we propose a very simple quantifier that shows to be highly correlated with global financial instability periods, being also a good estimator of the market crisis risk and market resilience. We show that this estimator displays striking results when applied to countries that played central roles during the last major global market crisis. The simplicity and effectiveness of our quantifier allow us to anticipate its use in a wide range of disciplines. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/110597 Gonçalves, Bruna Amin; Carpi, Laura; Rosso, Osvaldo Aníbal; Ravetti, Martín G.; Atman, A. P. F.; Quantifying instabilities in Financial Markets; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 525; 7-2019; 606-615 0378-4371 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/110597 |
identifier_str_mv |
Gonçalves, Bruna Amin; Carpi, Laura; Rosso, Osvaldo Aníbal; Ravetti, Martín G.; Atman, A. P. F.; Quantifying instabilities in Financial Markets; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 525; 7-2019; 606-615 0378-4371 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2019.03.029 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1704.05499 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0378437119302560 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846781823817875456 |
score |
12.982451 |