Arabidopsis photoperiodic regulator CONSTANS feeds back to control the circadian clock

Autores
San Martín, Abril; Yanovsky, Marcelo Javier
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Human beings live in a world defined by daily cycles of light and darkness caused by the Earth’s rotation around its axis. Plants, like most living organisms, have evolved internal circadian clocks that time biological processes in anticipation of these daily environmental changes (Young and Kay, 2001). The plant clock relies on core genes encoding transcription factors (TFs), which regulate each other’s expression through intricate networks of interlocking transcriptional-translational feedback loops (Nohales and Kay, 2016). These loops ultimately control the expression of thousands of genes, allowing plants to adapt to daily fluctuations in light, temperature, and humidity (Covington et al., 2008). In addition to daily rhythms, the Earth experiences yearly seasonal cycles marked by longer, warmer days in spring and summer, followed by shorter, cooler days in autumn and winter. Seasonal changes in day length and temperature intensify with distance from the equator. Consequently, the ability of plants to adjust their growth and development in anticipation of seasonal changes determines their latitudinal distribution (McMillan, 1960).
Fil: San Martín, Abril. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina. Fundación Instituto Leloir; Argentina
Fil: Yanovsky, Marcelo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina. Fundación Instituto Leloir; Argentina
Materia
Plants
Photoperiodism
Flowering
CONSTANS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/273147

id CONICETDig_dde75508bf8fb719a7d1708505ec17d7
oai_identifier_str oai:ri.conicet.gov.ar:11336/273147
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Arabidopsis photoperiodic regulator CONSTANS feeds back to control the circadian clockSan Martín, AbrilYanovsky, Marcelo JavierPlantsPhotoperiodismFloweringCONSTANShttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Human beings live in a world defined by daily cycles of light and darkness caused by the Earth’s rotation around its axis. Plants, like most living organisms, have evolved internal circadian clocks that time biological processes in anticipation of these daily environmental changes (Young and Kay, 2001). The plant clock relies on core genes encoding transcription factors (TFs), which regulate each other’s expression through intricate networks of interlocking transcriptional-translational feedback loops (Nohales and Kay, 2016). These loops ultimately control the expression of thousands of genes, allowing plants to adapt to daily fluctuations in light, temperature, and humidity (Covington et al., 2008). In addition to daily rhythms, the Earth experiences yearly seasonal cycles marked by longer, warmer days in spring and summer, followed by shorter, cooler days in autumn and winter. Seasonal changes in day length and temperature intensify with distance from the equator. Consequently, the ability of plants to adjust their growth and development in anticipation of seasonal changes determines their latitudinal distribution (McMillan, 1960).Fil: San Martín, Abril. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina. Fundación Instituto Leloir; ArgentinaFil: Yanovsky, Marcelo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina. Fundación Instituto Leloir; ArgentinaOxford University Press2024-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/273147San Martín, Abril; Yanovsky, Marcelo Javier; Arabidopsis photoperiodic regulator CONSTANS feeds back to control the circadian clock; Oxford University Press; Molecular Plant; 17; 9; 9-2024; 1338-13401674-2052CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1674205224002570info:eu-repo/semantics/altIdentifier/doi/10.1016/j.molp.2024.08.002info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:53:01Zoai:ri.conicet.gov.ar:11336/273147instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:53:01.652CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Arabidopsis photoperiodic regulator CONSTANS feeds back to control the circadian clock
title Arabidopsis photoperiodic regulator CONSTANS feeds back to control the circadian clock
spellingShingle Arabidopsis photoperiodic regulator CONSTANS feeds back to control the circadian clock
San Martín, Abril
Plants
Photoperiodism
Flowering
CONSTANS
title_short Arabidopsis photoperiodic regulator CONSTANS feeds back to control the circadian clock
title_full Arabidopsis photoperiodic regulator CONSTANS feeds back to control the circadian clock
title_fullStr Arabidopsis photoperiodic regulator CONSTANS feeds back to control the circadian clock
title_full_unstemmed Arabidopsis photoperiodic regulator CONSTANS feeds back to control the circadian clock
title_sort Arabidopsis photoperiodic regulator CONSTANS feeds back to control the circadian clock
dc.creator.none.fl_str_mv San Martín, Abril
Yanovsky, Marcelo Javier
author San Martín, Abril
author_facet San Martín, Abril
Yanovsky, Marcelo Javier
author_role author
author2 Yanovsky, Marcelo Javier
author2_role author
dc.subject.none.fl_str_mv Plants
Photoperiodism
Flowering
CONSTANS
topic Plants
Photoperiodism
Flowering
CONSTANS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Human beings live in a world defined by daily cycles of light and darkness caused by the Earth’s rotation around its axis. Plants, like most living organisms, have evolved internal circadian clocks that time biological processes in anticipation of these daily environmental changes (Young and Kay, 2001). The plant clock relies on core genes encoding transcription factors (TFs), which regulate each other’s expression through intricate networks of interlocking transcriptional-translational feedback loops (Nohales and Kay, 2016). These loops ultimately control the expression of thousands of genes, allowing plants to adapt to daily fluctuations in light, temperature, and humidity (Covington et al., 2008). In addition to daily rhythms, the Earth experiences yearly seasonal cycles marked by longer, warmer days in spring and summer, followed by shorter, cooler days in autumn and winter. Seasonal changes in day length and temperature intensify with distance from the equator. Consequently, the ability of plants to adjust their growth and development in anticipation of seasonal changes determines their latitudinal distribution (McMillan, 1960).
Fil: San Martín, Abril. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina. Fundación Instituto Leloir; Argentina
Fil: Yanovsky, Marcelo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina. Fundación Instituto Leloir; Argentina
description Human beings live in a world defined by daily cycles of light and darkness caused by the Earth’s rotation around its axis. Plants, like most living organisms, have evolved internal circadian clocks that time biological processes in anticipation of these daily environmental changes (Young and Kay, 2001). The plant clock relies on core genes encoding transcription factors (TFs), which regulate each other’s expression through intricate networks of interlocking transcriptional-translational feedback loops (Nohales and Kay, 2016). These loops ultimately control the expression of thousands of genes, allowing plants to adapt to daily fluctuations in light, temperature, and humidity (Covington et al., 2008). In addition to daily rhythms, the Earth experiences yearly seasonal cycles marked by longer, warmer days in spring and summer, followed by shorter, cooler days in autumn and winter. Seasonal changes in day length and temperature intensify with distance from the equator. Consequently, the ability of plants to adjust their growth and development in anticipation of seasonal changes determines their latitudinal distribution (McMillan, 1960).
publishDate 2024
dc.date.none.fl_str_mv 2024-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/273147
San Martín, Abril; Yanovsky, Marcelo Javier; Arabidopsis photoperiodic regulator CONSTANS feeds back to control the circadian clock; Oxford University Press; Molecular Plant; 17; 9; 9-2024; 1338-1340
1674-2052
CONICET Digital
CONICET
url http://hdl.handle.net/11336/273147
identifier_str_mv San Martín, Abril; Yanovsky, Marcelo Javier; Arabidopsis photoperiodic regulator CONSTANS feeds back to control the circadian clock; Oxford University Press; Molecular Plant; 17; 9; 9-2024; 1338-1340
1674-2052
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1674205224002570
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.molp.2024.08.002
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Oxford University Press
publisher.none.fl_str_mv Oxford University Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846782224518610944
score 13.229304