Residential building design optimisation using sensitivity analysis and genetic algorithm
- Autores
- Bre, Facundo; Silva, Arthur Santos; Ghisi, Enedir; Fachinotti, Victor Daniel
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The objective of this paper is to combine sensitivity analysis and simulation-based optimisation in order to optimise the thermal and energy performance of residential buildings in the Argentine Littoral region. An actual house was selected as case study. This is a typical, local, single-family house having some rooms conditioned only by natural ventilation, and other rooms with natural ventilation supplemented by mechanical air-conditioning (hybrid ventilation). Hence, the total degree-hours at the naturally ventilated living room and the total energy consumption by air-conditioning at the bedrooms were chosen as objective functions to be minimised. The global objective function characterising the thermal and energy performance of the house was defined as the weighted sum of these objective functions. This objective function was computed using the EnergyPlus building performance simulation programme. Then, we performed a sensitivity analysis using the Morris screening method to rank the influence of the design variables on the objective function. This showed that the type of external walls, the windows infiltration rate and the solar azimuth were the most influential design variables on the given objective function for the considered house, and also that the azimuth either had a highly nonlinear effect on the objective function or was highly correlated to the others variables, deserving in any case a finer discretisation. Finally, we solved an optimisation problem using genetic algorithms in order to find the optimal set of design variables for the considered house. The results highlighted the efficiency and the effectiveness of the proposed methodology to redesign a typical house in the Argentine Littoral region, improving hugely its thermal and energy performance.
Fil: Bre, Facundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina. Universidad Tecnológica Nacional. Facultad Regional Concepción del Uruguay; Argentina
Fil: Silva, Arthur Santos. Universidade Federal de Santa Catarina; Brasil
Fil: Ghisi, Enedir. Universidade Federal de Santa Catarina; Brasil
Fil: Fachinotti, Victor Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina - Materia
-
Energy Consumption
Energyplus
Genetic Algorithms
Hybrid Ventilation
Multi-Objective Optimisation
Residential Building
Sensitivity Analysis - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/38286
Ver los metadatos del registro completo
| id |
CONICETDig_b68325f51ff757eeac1847dcb469058c |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/38286 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Residential building design optimisation using sensitivity analysis and genetic algorithmBre, FacundoSilva, Arthur SantosGhisi, EnedirFachinotti, Victor DanielEnergy ConsumptionEnergyplusGenetic AlgorithmsHybrid VentilationMulti-Objective OptimisationResidential BuildingSensitivity Analysishttps://purl.org/becyt/ford/2.1https://purl.org/becyt/ford/2https://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1The objective of this paper is to combine sensitivity analysis and simulation-based optimisation in order to optimise the thermal and energy performance of residential buildings in the Argentine Littoral region. An actual house was selected as case study. This is a typical, local, single-family house having some rooms conditioned only by natural ventilation, and other rooms with natural ventilation supplemented by mechanical air-conditioning (hybrid ventilation). Hence, the total degree-hours at the naturally ventilated living room and the total energy consumption by air-conditioning at the bedrooms were chosen as objective functions to be minimised. The global objective function characterising the thermal and energy performance of the house was defined as the weighted sum of these objective functions. This objective function was computed using the EnergyPlus building performance simulation programme. Then, we performed a sensitivity analysis using the Morris screening method to rank the influence of the design variables on the objective function. This showed that the type of external walls, the windows infiltration rate and the solar azimuth were the most influential design variables on the given objective function for the considered house, and also that the azimuth either had a highly nonlinear effect on the objective function or was highly correlated to the others variables, deserving in any case a finer discretisation. Finally, we solved an optimisation problem using genetic algorithms in order to find the optimal set of design variables for the considered house. The results highlighted the efficiency and the effectiveness of the proposed methodology to redesign a typical house in the Argentine Littoral region, improving hugely its thermal and energy performance.Fil: Bre, Facundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina. Universidad Tecnológica Nacional. Facultad Regional Concepción del Uruguay; ArgentinaFil: Silva, Arthur Santos. Universidade Federal de Santa Catarina; BrasilFil: Ghisi, Enedir. Universidade Federal de Santa Catarina; BrasilFil: Fachinotti, Victor Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; ArgentinaElsevier Science Sa2016-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/38286Bre, Facundo; Silva, Arthur Santos; Ghisi, Enedir; Fachinotti, Victor Daniel; Residential building design optimisation using sensitivity analysis and genetic algorithm; Elsevier Science Sa; Energy and Buildings; 133; 12-2016; 853-8660378-7788CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0378778816312440info:eu-repo/semantics/altIdentifier/doi/10.1016/j.enbuild.2016.10.025info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:06:08Zoai:ri.conicet.gov.ar:11336/38286instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:06:08.635CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Residential building design optimisation using sensitivity analysis and genetic algorithm |
| title |
Residential building design optimisation using sensitivity analysis and genetic algorithm |
| spellingShingle |
Residential building design optimisation using sensitivity analysis and genetic algorithm Bre, Facundo Energy Consumption Energyplus Genetic Algorithms Hybrid Ventilation Multi-Objective Optimisation Residential Building Sensitivity Analysis |
| title_short |
Residential building design optimisation using sensitivity analysis and genetic algorithm |
| title_full |
Residential building design optimisation using sensitivity analysis and genetic algorithm |
| title_fullStr |
Residential building design optimisation using sensitivity analysis and genetic algorithm |
| title_full_unstemmed |
Residential building design optimisation using sensitivity analysis and genetic algorithm |
| title_sort |
Residential building design optimisation using sensitivity analysis and genetic algorithm |
| dc.creator.none.fl_str_mv |
Bre, Facundo Silva, Arthur Santos Ghisi, Enedir Fachinotti, Victor Daniel |
| author |
Bre, Facundo |
| author_facet |
Bre, Facundo Silva, Arthur Santos Ghisi, Enedir Fachinotti, Victor Daniel |
| author_role |
author |
| author2 |
Silva, Arthur Santos Ghisi, Enedir Fachinotti, Victor Daniel |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
Energy Consumption Energyplus Genetic Algorithms Hybrid Ventilation Multi-Objective Optimisation Residential Building Sensitivity Analysis |
| topic |
Energy Consumption Energyplus Genetic Algorithms Hybrid Ventilation Multi-Objective Optimisation Residential Building Sensitivity Analysis |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.1 https://purl.org/becyt/ford/2 https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
The objective of this paper is to combine sensitivity analysis and simulation-based optimisation in order to optimise the thermal and energy performance of residential buildings in the Argentine Littoral region. An actual house was selected as case study. This is a typical, local, single-family house having some rooms conditioned only by natural ventilation, and other rooms with natural ventilation supplemented by mechanical air-conditioning (hybrid ventilation). Hence, the total degree-hours at the naturally ventilated living room and the total energy consumption by air-conditioning at the bedrooms were chosen as objective functions to be minimised. The global objective function characterising the thermal and energy performance of the house was defined as the weighted sum of these objective functions. This objective function was computed using the EnergyPlus building performance simulation programme. Then, we performed a sensitivity analysis using the Morris screening method to rank the influence of the design variables on the objective function. This showed that the type of external walls, the windows infiltration rate and the solar azimuth were the most influential design variables on the given objective function for the considered house, and also that the azimuth either had a highly nonlinear effect on the objective function or was highly correlated to the others variables, deserving in any case a finer discretisation. Finally, we solved an optimisation problem using genetic algorithms in order to find the optimal set of design variables for the considered house. The results highlighted the efficiency and the effectiveness of the proposed methodology to redesign a typical house in the Argentine Littoral region, improving hugely its thermal and energy performance. Fil: Bre, Facundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina. Universidad Tecnológica Nacional. Facultad Regional Concepción del Uruguay; Argentina Fil: Silva, Arthur Santos. Universidade Federal de Santa Catarina; Brasil Fil: Ghisi, Enedir. Universidade Federal de Santa Catarina; Brasil Fil: Fachinotti, Victor Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina |
| description |
The objective of this paper is to combine sensitivity analysis and simulation-based optimisation in order to optimise the thermal and energy performance of residential buildings in the Argentine Littoral region. An actual house was selected as case study. This is a typical, local, single-family house having some rooms conditioned only by natural ventilation, and other rooms with natural ventilation supplemented by mechanical air-conditioning (hybrid ventilation). Hence, the total degree-hours at the naturally ventilated living room and the total energy consumption by air-conditioning at the bedrooms were chosen as objective functions to be minimised. The global objective function characterising the thermal and energy performance of the house was defined as the weighted sum of these objective functions. This objective function was computed using the EnergyPlus building performance simulation programme. Then, we performed a sensitivity analysis using the Morris screening method to rank the influence of the design variables on the objective function. This showed that the type of external walls, the windows infiltration rate and the solar azimuth were the most influential design variables on the given objective function for the considered house, and also that the azimuth either had a highly nonlinear effect on the objective function or was highly correlated to the others variables, deserving in any case a finer discretisation. Finally, we solved an optimisation problem using genetic algorithms in order to find the optimal set of design variables for the considered house. The results highlighted the efficiency and the effectiveness of the proposed methodology to redesign a typical house in the Argentine Littoral region, improving hugely its thermal and energy performance. |
| publishDate |
2016 |
| dc.date.none.fl_str_mv |
2016-12 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/38286 Bre, Facundo; Silva, Arthur Santos; Ghisi, Enedir; Fachinotti, Victor Daniel; Residential building design optimisation using sensitivity analysis and genetic algorithm; Elsevier Science Sa; Energy and Buildings; 133; 12-2016; 853-866 0378-7788 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/38286 |
| identifier_str_mv |
Bre, Facundo; Silva, Arthur Santos; Ghisi, Enedir; Fachinotti, Victor Daniel; Residential building design optimisation using sensitivity analysis and genetic algorithm; Elsevier Science Sa; Energy and Buildings; 133; 12-2016; 853-866 0378-7788 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0378778816312440 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.enbuild.2016.10.025 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier Science Sa |
| publisher.none.fl_str_mv |
Elsevier Science Sa |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781354636738560 |
| score |
12.982451 |