Neumann and Robin type boundary conditions in Fractional Orlicz-Sobolev spaces
- Autores
- Bahrouni, Sabri; Salort, Ariel Martin
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In the first part of this article we deal with the existence of at least three non-trivial weak solutions of a nonlocal problem with nonstandard growth involving a nonlocal Robin type boundary condition. The second part of the article is devoted to study eigenvalues and minimizers of several nonlocal problems for the fractional g-Laplacian (-Δg)s with different boundary conditions, namely, Dirichlet, Neumann and Robin.
Fil: Bahrouni, Sabri. University of Monastir Monastir; Túnez
Fil: Salort, Ariel Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
EIGENVALUE PROBLEMS
FRACTIONAL ORLICZ-SOBOLEV SPACES
NEUMANN AND ROBIN PROBLEM
THREE SOLUTIONS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/143205
Ver los metadatos del registro completo
id |
CONICETDig_dc1a5f2f605b412c0fef7a0cb2bdb37f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/143205 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Neumann and Robin type boundary conditions in Fractional Orlicz-Sobolev spacesBahrouni, SabriSalort, Ariel MartinEIGENVALUE PROBLEMSFRACTIONAL ORLICZ-SOBOLEV SPACESNEUMANN AND ROBIN PROBLEMTHREE SOLUTIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In the first part of this article we deal with the existence of at least three non-trivial weak solutions of a nonlocal problem with nonstandard growth involving a nonlocal Robin type boundary condition. The second part of the article is devoted to study eigenvalues and minimizers of several nonlocal problems for the fractional g-Laplacian (-Δg)s with different boundary conditions, namely, Dirichlet, Neumann and Robin.Fil: Bahrouni, Sabri. University of Monastir Monastir; TúnezFil: Salort, Ariel Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaCambridge University Press2020-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/143205Bahrouni, Sabri; Salort, Ariel Martin; Neumann and Robin type boundary conditions in Fractional Orlicz-Sobolev spaces; Cambridge University Press; Esaim. Cocv; 27; 10-2020; 1-221292-81191262-3377CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.esaim-cocv.org/10.1051/cocv/2020064info:eu-repo/semantics/altIdentifier/doi/10.1051/cocv/2020064info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:06:26Zoai:ri.conicet.gov.ar:11336/143205instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:06:26.915CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Neumann and Robin type boundary conditions in Fractional Orlicz-Sobolev spaces |
title |
Neumann and Robin type boundary conditions in Fractional Orlicz-Sobolev spaces |
spellingShingle |
Neumann and Robin type boundary conditions in Fractional Orlicz-Sobolev spaces Bahrouni, Sabri EIGENVALUE PROBLEMS FRACTIONAL ORLICZ-SOBOLEV SPACES NEUMANN AND ROBIN PROBLEM THREE SOLUTIONS |
title_short |
Neumann and Robin type boundary conditions in Fractional Orlicz-Sobolev spaces |
title_full |
Neumann and Robin type boundary conditions in Fractional Orlicz-Sobolev spaces |
title_fullStr |
Neumann and Robin type boundary conditions in Fractional Orlicz-Sobolev spaces |
title_full_unstemmed |
Neumann and Robin type boundary conditions in Fractional Orlicz-Sobolev spaces |
title_sort |
Neumann and Robin type boundary conditions in Fractional Orlicz-Sobolev spaces |
dc.creator.none.fl_str_mv |
Bahrouni, Sabri Salort, Ariel Martin |
author |
Bahrouni, Sabri |
author_facet |
Bahrouni, Sabri Salort, Ariel Martin |
author_role |
author |
author2 |
Salort, Ariel Martin |
author2_role |
author |
dc.subject.none.fl_str_mv |
EIGENVALUE PROBLEMS FRACTIONAL ORLICZ-SOBOLEV SPACES NEUMANN AND ROBIN PROBLEM THREE SOLUTIONS |
topic |
EIGENVALUE PROBLEMS FRACTIONAL ORLICZ-SOBOLEV SPACES NEUMANN AND ROBIN PROBLEM THREE SOLUTIONS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In the first part of this article we deal with the existence of at least three non-trivial weak solutions of a nonlocal problem with nonstandard growth involving a nonlocal Robin type boundary condition. The second part of the article is devoted to study eigenvalues and minimizers of several nonlocal problems for the fractional g-Laplacian (-Δg)s with different boundary conditions, namely, Dirichlet, Neumann and Robin. Fil: Bahrouni, Sabri. University of Monastir Monastir; Túnez Fil: Salort, Ariel Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
In the first part of this article we deal with the existence of at least three non-trivial weak solutions of a nonlocal problem with nonstandard growth involving a nonlocal Robin type boundary condition. The second part of the article is devoted to study eigenvalues and minimizers of several nonlocal problems for the fractional g-Laplacian (-Δg)s with different boundary conditions, namely, Dirichlet, Neumann and Robin. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/143205 Bahrouni, Sabri; Salort, Ariel Martin; Neumann and Robin type boundary conditions in Fractional Orlicz-Sobolev spaces; Cambridge University Press; Esaim. Cocv; 27; 10-2020; 1-22 1292-8119 1262-3377 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/143205 |
identifier_str_mv |
Bahrouni, Sabri; Salort, Ariel Martin; Neumann and Robin type boundary conditions in Fractional Orlicz-Sobolev spaces; Cambridge University Press; Esaim. Cocv; 27; 10-2020; 1-22 1292-8119 1262-3377 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.esaim-cocv.org/10.1051/cocv/2020064 info:eu-repo/semantics/altIdentifier/doi/10.1051/cocv/2020064 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Cambridge University Press |
publisher.none.fl_str_mv |
Cambridge University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269958938034176 |
score |
13.13397 |