Neumann and Robin type boundary conditions in Fractional Orlicz-Sobolev spaces

Autores
Bahrouni, Sabri; Salort, Ariel Martin
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In the first part of this article we deal with the existence of at least three non-trivial weak solutions of a nonlocal problem with nonstandard growth involving a nonlocal Robin type boundary condition. The second part of the article is devoted to study eigenvalues and minimizers of several nonlocal problems for the fractional g-Laplacian (-Δg)s with different boundary conditions, namely, Dirichlet, Neumann and Robin.
Fil: Bahrouni, Sabri. University of Monastir Monastir; Túnez
Fil: Salort, Ariel Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
EIGENVALUE PROBLEMS
FRACTIONAL ORLICZ-SOBOLEV SPACES
NEUMANN AND ROBIN PROBLEM
THREE SOLUTIONS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/143205

id CONICETDig_dc1a5f2f605b412c0fef7a0cb2bdb37f
oai_identifier_str oai:ri.conicet.gov.ar:11336/143205
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Neumann and Robin type boundary conditions in Fractional Orlicz-Sobolev spacesBahrouni, SabriSalort, Ariel MartinEIGENVALUE PROBLEMSFRACTIONAL ORLICZ-SOBOLEV SPACESNEUMANN AND ROBIN PROBLEMTHREE SOLUTIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In the first part of this article we deal with the existence of at least three non-trivial weak solutions of a nonlocal problem with nonstandard growth involving a nonlocal Robin type boundary condition. The second part of the article is devoted to study eigenvalues and minimizers of several nonlocal problems for the fractional g-Laplacian (-Δg)s with different boundary conditions, namely, Dirichlet, Neumann and Robin.Fil: Bahrouni, Sabri. University of Monastir Monastir; TúnezFil: Salort, Ariel Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaCambridge University Press2020-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/143205Bahrouni, Sabri; Salort, Ariel Martin; Neumann and Robin type boundary conditions in Fractional Orlicz-Sobolev spaces; Cambridge University Press; Esaim. Cocv; 27; 10-2020; 1-221292-81191262-3377CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.esaim-cocv.org/10.1051/cocv/2020064info:eu-repo/semantics/altIdentifier/doi/10.1051/cocv/2020064info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:06:26Zoai:ri.conicet.gov.ar:11336/143205instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:06:26.915CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Neumann and Robin type boundary conditions in Fractional Orlicz-Sobolev spaces
title Neumann and Robin type boundary conditions in Fractional Orlicz-Sobolev spaces
spellingShingle Neumann and Robin type boundary conditions in Fractional Orlicz-Sobolev spaces
Bahrouni, Sabri
EIGENVALUE PROBLEMS
FRACTIONAL ORLICZ-SOBOLEV SPACES
NEUMANN AND ROBIN PROBLEM
THREE SOLUTIONS
title_short Neumann and Robin type boundary conditions in Fractional Orlicz-Sobolev spaces
title_full Neumann and Robin type boundary conditions in Fractional Orlicz-Sobolev spaces
title_fullStr Neumann and Robin type boundary conditions in Fractional Orlicz-Sobolev spaces
title_full_unstemmed Neumann and Robin type boundary conditions in Fractional Orlicz-Sobolev spaces
title_sort Neumann and Robin type boundary conditions in Fractional Orlicz-Sobolev spaces
dc.creator.none.fl_str_mv Bahrouni, Sabri
Salort, Ariel Martin
author Bahrouni, Sabri
author_facet Bahrouni, Sabri
Salort, Ariel Martin
author_role author
author2 Salort, Ariel Martin
author2_role author
dc.subject.none.fl_str_mv EIGENVALUE PROBLEMS
FRACTIONAL ORLICZ-SOBOLEV SPACES
NEUMANN AND ROBIN PROBLEM
THREE SOLUTIONS
topic EIGENVALUE PROBLEMS
FRACTIONAL ORLICZ-SOBOLEV SPACES
NEUMANN AND ROBIN PROBLEM
THREE SOLUTIONS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In the first part of this article we deal with the existence of at least three non-trivial weak solutions of a nonlocal problem with nonstandard growth involving a nonlocal Robin type boundary condition. The second part of the article is devoted to study eigenvalues and minimizers of several nonlocal problems for the fractional g-Laplacian (-Δg)s with different boundary conditions, namely, Dirichlet, Neumann and Robin.
Fil: Bahrouni, Sabri. University of Monastir Monastir; Túnez
Fil: Salort, Ariel Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description In the first part of this article we deal with the existence of at least three non-trivial weak solutions of a nonlocal problem with nonstandard growth involving a nonlocal Robin type boundary condition. The second part of the article is devoted to study eigenvalues and minimizers of several nonlocal problems for the fractional g-Laplacian (-Δg)s with different boundary conditions, namely, Dirichlet, Neumann and Robin.
publishDate 2020
dc.date.none.fl_str_mv 2020-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/143205
Bahrouni, Sabri; Salort, Ariel Martin; Neumann and Robin type boundary conditions in Fractional Orlicz-Sobolev spaces; Cambridge University Press; Esaim. Cocv; 27; 10-2020; 1-22
1292-8119
1262-3377
CONICET Digital
CONICET
url http://hdl.handle.net/11336/143205
identifier_str_mv Bahrouni, Sabri; Salort, Ariel Martin; Neumann and Robin type boundary conditions in Fractional Orlicz-Sobolev spaces; Cambridge University Press; Esaim. Cocv; 27; 10-2020; 1-22
1292-8119
1262-3377
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.esaim-cocv.org/10.1051/cocv/2020064
info:eu-repo/semantics/altIdentifier/doi/10.1051/cocv/2020064
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Cambridge University Press
publisher.none.fl_str_mv Cambridge University Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269958938034176
score 13.13397