Ichnotaxobases for bioerosion trace fossils in bones
- Autores
- Pirrone, Cecilia Anabel; Buatois, Luis Alberto; Bromley, Richard G.
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Bioerosion trace fossils in bones are defined as biogenic structures that cut or destroy hard bone tissue as the result of mechanical and/or chemical processes. Under the premise that their paleoecological potential can completely be realized only through correct taxonomic assignment, this work focuses on the methodology for naming these biogenic structures. Thus, we propose the following ichnotaxobases in order to assist in naming trace fossils in bones: general morphology, bioglyphs, filling, branching, pattern of occurrence, and site of emplacement. The most common general morphologies are: pits and holes (borings); chambers; trails; tubes; channels (canals); grooves; striae; and furrows. The main types of bioglyphs are grooves and scratches, which may display different arrangements, such as parallel and opposing, or arcuate paired. The nature of the fill may help recognition of the origin, composition, and relationship with the surrounding sediment, as well as processes of destruction or consumption of bony tissue. The structure and layout of the filling, such as meniscate backfill or pelleted filling, offer information about the bioeroding processes. Branching structures on cortical bone are present in canals and furrows. Where the trace penetrates spongy bone, branching structures are forming tunnels that may connect internal chambers. The common patterns of occurrence are individual, paired, grouped, overlapping, lined, and arcuate. The site of emplacement may be in cortical bone, spongy bone, articular surfaces, internal bone microstructures, and external bone anatomical structures. The use of substrate as an ichnotaxobase is problematic, but as biological substrate, bone itself is a valuable source of information for paleoecologic and ethologic inferences. Given the paleontological importance of bioerosion trace fossils in bones, we underscore interactions between ichnology and other sciences, such as forensic entomology, archaeology, paleoecology, and taphonomy.
Fil: Pirrone, Cecilia Anabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina
Fil: Buatois, Luis Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. University of Saskatchewan; Canadá
Fil: Bromley, Richard G.. Statens Naturhistoriske Museum; Dinamarca - Materia
-
ICHNOLOGY
BIOEROSION
ICHNOTAXONOMY
BONES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/182839
Ver los metadatos del registro completo
id |
CONICETDig_da345ffe6b38ca7443d8947f6219124f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/182839 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Ichnotaxobases for bioerosion trace fossils in bonesPirrone, Cecilia AnabelBuatois, Luis AlbertoBromley, Richard G.ICHNOLOGYBIOEROSIONICHNOTAXONOMYBONEShttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Bioerosion trace fossils in bones are defined as biogenic structures that cut or destroy hard bone tissue as the result of mechanical and/or chemical processes. Under the premise that their paleoecological potential can completely be realized only through correct taxonomic assignment, this work focuses on the methodology for naming these biogenic structures. Thus, we propose the following ichnotaxobases in order to assist in naming trace fossils in bones: general morphology, bioglyphs, filling, branching, pattern of occurrence, and site of emplacement. The most common general morphologies are: pits and holes (borings); chambers; trails; tubes; channels (canals); grooves; striae; and furrows. The main types of bioglyphs are grooves and scratches, which may display different arrangements, such as parallel and opposing, or arcuate paired. The nature of the fill may help recognition of the origin, composition, and relationship with the surrounding sediment, as well as processes of destruction or consumption of bony tissue. The structure and layout of the filling, such as meniscate backfill or pelleted filling, offer information about the bioeroding processes. Branching structures on cortical bone are present in canals and furrows. Where the trace penetrates spongy bone, branching structures are forming tunnels that may connect internal chambers. The common patterns of occurrence are individual, paired, grouped, overlapping, lined, and arcuate. The site of emplacement may be in cortical bone, spongy bone, articular surfaces, internal bone microstructures, and external bone anatomical structures. The use of substrate as an ichnotaxobase is problematic, but as biological substrate, bone itself is a valuable source of information for paleoecologic and ethologic inferences. Given the paleontological importance of bioerosion trace fossils in bones, we underscore interactions between ichnology and other sciences, such as forensic entomology, archaeology, paleoecology, and taphonomy.Fil: Pirrone, Cecilia Anabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaFil: Buatois, Luis Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. University of Saskatchewan; CanadáFil: Bromley, Richard G.. Statens Naturhistoriske Museum; DinamarcaCambridge University Press2014-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/182839Pirrone, Cecilia Anabel; Buatois, Luis Alberto; Bromley, Richard G.; Ichnotaxobases for bioerosion trace fossils in bones; Cambridge University Press; Journal of Paleontology; 88; 1; 1-2014; 195-2030022-33601937-2337CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.bioone.org/doi/full/10.1666/11-058info:eu-repo/semantics/altIdentifier/doi/10.1666/11-058info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:11:11Zoai:ri.conicet.gov.ar:11336/182839instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:11:12.218CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Ichnotaxobases for bioerosion trace fossils in bones |
title |
Ichnotaxobases for bioerosion trace fossils in bones |
spellingShingle |
Ichnotaxobases for bioerosion trace fossils in bones Pirrone, Cecilia Anabel ICHNOLOGY BIOEROSION ICHNOTAXONOMY BONES |
title_short |
Ichnotaxobases for bioerosion trace fossils in bones |
title_full |
Ichnotaxobases for bioerosion trace fossils in bones |
title_fullStr |
Ichnotaxobases for bioerosion trace fossils in bones |
title_full_unstemmed |
Ichnotaxobases for bioerosion trace fossils in bones |
title_sort |
Ichnotaxobases for bioerosion trace fossils in bones |
dc.creator.none.fl_str_mv |
Pirrone, Cecilia Anabel Buatois, Luis Alberto Bromley, Richard G. |
author |
Pirrone, Cecilia Anabel |
author_facet |
Pirrone, Cecilia Anabel Buatois, Luis Alberto Bromley, Richard G. |
author_role |
author |
author2 |
Buatois, Luis Alberto Bromley, Richard G. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
ICHNOLOGY BIOEROSION ICHNOTAXONOMY BONES |
topic |
ICHNOLOGY BIOEROSION ICHNOTAXONOMY BONES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Bioerosion trace fossils in bones are defined as biogenic structures that cut or destroy hard bone tissue as the result of mechanical and/or chemical processes. Under the premise that their paleoecological potential can completely be realized only through correct taxonomic assignment, this work focuses on the methodology for naming these biogenic structures. Thus, we propose the following ichnotaxobases in order to assist in naming trace fossils in bones: general morphology, bioglyphs, filling, branching, pattern of occurrence, and site of emplacement. The most common general morphologies are: pits and holes (borings); chambers; trails; tubes; channels (canals); grooves; striae; and furrows. The main types of bioglyphs are grooves and scratches, which may display different arrangements, such as parallel and opposing, or arcuate paired. The nature of the fill may help recognition of the origin, composition, and relationship with the surrounding sediment, as well as processes of destruction or consumption of bony tissue. The structure and layout of the filling, such as meniscate backfill or pelleted filling, offer information about the bioeroding processes. Branching structures on cortical bone are present in canals and furrows. Where the trace penetrates spongy bone, branching structures are forming tunnels that may connect internal chambers. The common patterns of occurrence are individual, paired, grouped, overlapping, lined, and arcuate. The site of emplacement may be in cortical bone, spongy bone, articular surfaces, internal bone microstructures, and external bone anatomical structures. The use of substrate as an ichnotaxobase is problematic, but as biological substrate, bone itself is a valuable source of information for paleoecologic and ethologic inferences. Given the paleontological importance of bioerosion trace fossils in bones, we underscore interactions between ichnology and other sciences, such as forensic entomology, archaeology, paleoecology, and taphonomy. Fil: Pirrone, Cecilia Anabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina Fil: Buatois, Luis Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. University of Saskatchewan; Canadá Fil: Bromley, Richard G.. Statens Naturhistoriske Museum; Dinamarca |
description |
Bioerosion trace fossils in bones are defined as biogenic structures that cut or destroy hard bone tissue as the result of mechanical and/or chemical processes. Under the premise that their paleoecological potential can completely be realized only through correct taxonomic assignment, this work focuses on the methodology for naming these biogenic structures. Thus, we propose the following ichnotaxobases in order to assist in naming trace fossils in bones: general morphology, bioglyphs, filling, branching, pattern of occurrence, and site of emplacement. The most common general morphologies are: pits and holes (borings); chambers; trails; tubes; channels (canals); grooves; striae; and furrows. The main types of bioglyphs are grooves and scratches, which may display different arrangements, such as parallel and opposing, or arcuate paired. The nature of the fill may help recognition of the origin, composition, and relationship with the surrounding sediment, as well as processes of destruction or consumption of bony tissue. The structure and layout of the filling, such as meniscate backfill or pelleted filling, offer information about the bioeroding processes. Branching structures on cortical bone are present in canals and furrows. Where the trace penetrates spongy bone, branching structures are forming tunnels that may connect internal chambers. The common patterns of occurrence are individual, paired, grouped, overlapping, lined, and arcuate. The site of emplacement may be in cortical bone, spongy bone, articular surfaces, internal bone microstructures, and external bone anatomical structures. The use of substrate as an ichnotaxobase is problematic, but as biological substrate, bone itself is a valuable source of information for paleoecologic and ethologic inferences. Given the paleontological importance of bioerosion trace fossils in bones, we underscore interactions between ichnology and other sciences, such as forensic entomology, archaeology, paleoecology, and taphonomy. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/182839 Pirrone, Cecilia Anabel; Buatois, Luis Alberto; Bromley, Richard G.; Ichnotaxobases for bioerosion trace fossils in bones; Cambridge University Press; Journal of Paleontology; 88; 1; 1-2014; 195-203 0022-3360 1937-2337 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/182839 |
identifier_str_mv |
Pirrone, Cecilia Anabel; Buatois, Luis Alberto; Bromley, Richard G.; Ichnotaxobases for bioerosion trace fossils in bones; Cambridge University Press; Journal of Paleontology; 88; 1; 1-2014; 195-203 0022-3360 1937-2337 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.bioone.org/doi/full/10.1666/11-058 info:eu-repo/semantics/altIdentifier/doi/10.1666/11-058 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Cambridge University Press |
publisher.none.fl_str_mv |
Cambridge University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270149728534528 |
score |
13.13397 |