Putative hydroid symbionts recorded by bioclaustrations in fossil molluscan shells: a revision and reinterpretation of the cecidogenus Rodocanalis
- Autores
- Wisshak, Max; Schneider, Simon; Mikulás, Radek; Richiano, Sebastián Miguel; Ramil, Fran; Wilson, Mark A.
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The fossil record yields a peculiar phenomenon in different kinds of molluscan shells: bioclaustrations formed around (epi)symbionts during growth of the hosts´ shell margin. Four morphologies, two of them formerly considered bioerosion traces, are here united in the parataxonomy of bioclaustration structures under the revised cecidogenus Rodocanalis. These are: (1) simple linear grooves (Rodocanalis linearis csp. nov.) formed below the periostracum in Pleistocene to Recent endobenthic bivalves; (2) series of distally ramifying grooves (Rodocanalis runicus) in Silurian orthoconic nautiloids; (3) irregular networks of grooves (Rodocanalis reticulatus) in Jurassic to Cretaceous bivalves and gastropods; and (4) regular reticulate networks (Rodocanalis geometricus csp. nov.) in Jurassic to Cretaceous gastropods. The linear grooves might be associated with commensal worms, while multiple lines of reasoning point towards hydrozoan symbionts in the case of the branched and anastomosing grooves. After the hydrozoan larva settles and the first polyp becomes fixed on the calcareous ostracum at the shell margin, the process of bioclaustration commences when the periostracum surrounds the base of the polyp, which moves towards the external shell surface, while the hydrorhizae develop in the only possible direction: towards the shell growth margin. This enables new polyps to originate at the shell edge by budding, while the bioclaustration of the stolonial hydrorhizae advances. We consider the nature of this symbiotic relationship as mutualism, with the hydrozoan symbiont taking advantage of the host´s feeding current or food debris, and the molluscan host profiting from the defensive capability of the hydrozoan´s cnidocysts.
Fil: Wisshak, Max. No especifíca;
Fil: Schneider, Simon. No especifíca;
Fil: Mikulás, Radek. Czech Academy of Sciences; República Checa
Fil: Richiano, Sebastián Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Geología y Paleontología; Argentina
Fil: Ramil, Fran. Universidad de Vigo; España
Fil: Wilson, Mark A.. The College of Wooster; Estados Unidos - Materia
-
BIOCLAUSTRATION
BIOEROSION
CECIDOTAXONOMY
ICHNOTAXONOMY
RODOCANALIS
SYMBIOSIS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/233840
Ver los metadatos del registro completo
id |
CONICETDig_7462fd8705b54e9ae0e892d49998dc2a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/233840 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Putative hydroid symbionts recorded by bioclaustrations in fossil molluscan shells: a revision and reinterpretation of the cecidogenus RodocanalisWisshak, MaxSchneider, SimonMikulás, RadekRichiano, Sebastián MiguelRamil, FranWilson, Mark A.BIOCLAUSTRATIONBIOEROSIONCECIDOTAXONOMYICHNOTAXONOMYRODOCANALISSYMBIOSIShttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1The fossil record yields a peculiar phenomenon in different kinds of molluscan shells: bioclaustrations formed around (epi)symbionts during growth of the hosts´ shell margin. Four morphologies, two of them formerly considered bioerosion traces, are here united in the parataxonomy of bioclaustration structures under the revised cecidogenus Rodocanalis. These are: (1) simple linear grooves (Rodocanalis linearis csp. nov.) formed below the periostracum in Pleistocene to Recent endobenthic bivalves; (2) series of distally ramifying grooves (Rodocanalis runicus) in Silurian orthoconic nautiloids; (3) irregular networks of grooves (Rodocanalis reticulatus) in Jurassic to Cretaceous bivalves and gastropods; and (4) regular reticulate networks (Rodocanalis geometricus csp. nov.) in Jurassic to Cretaceous gastropods. The linear grooves might be associated with commensal worms, while multiple lines of reasoning point towards hydrozoan symbionts in the case of the branched and anastomosing grooves. After the hydrozoan larva settles and the first polyp becomes fixed on the calcareous ostracum at the shell margin, the process of bioclaustration commences when the periostracum surrounds the base of the polyp, which moves towards the external shell surface, while the hydrorhizae develop in the only possible direction: towards the shell growth margin. This enables new polyps to originate at the shell edge by budding, while the bioclaustration of the stolonial hydrorhizae advances. We consider the nature of this symbiotic relationship as mutualism, with the hydrozoan symbiont taking advantage of the host´s feeding current or food debris, and the molluscan host profiting from the defensive capability of the hydrozoan´s cnidocysts.Fil: Wisshak, Max. No especifíca;Fil: Schneider, Simon. No especifíca;Fil: Mikulás, Radek. Czech Academy of Sciences; República ChecaFil: Richiano, Sebastián Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Geología y Paleontología; ArgentinaFil: Ramil, Fran. Universidad de Vigo; EspañaFil: Wilson, Mark A.. The College of Wooster; Estados UnidosJohn Wiley & Sons2023-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/233840Wisshak, Max; Schneider, Simon; Mikulás, Radek; Richiano, Sebastián Miguel; Ramil, Fran; et al.; Putative hydroid symbionts recorded by bioclaustrations in fossil molluscan shells: a revision and reinterpretation of the cecidogenus Rodocanalis; John Wiley & Sons; Papers in Palaeontology; 9; 2; 3-2023; 1-212056-2802CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1002/spp2.1484info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:52:16Zoai:ri.conicet.gov.ar:11336/233840instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:52:17.135CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Putative hydroid symbionts recorded by bioclaustrations in fossil molluscan shells: a revision and reinterpretation of the cecidogenus Rodocanalis |
title |
Putative hydroid symbionts recorded by bioclaustrations in fossil molluscan shells: a revision and reinterpretation of the cecidogenus Rodocanalis |
spellingShingle |
Putative hydroid symbionts recorded by bioclaustrations in fossil molluscan shells: a revision and reinterpretation of the cecidogenus Rodocanalis Wisshak, Max BIOCLAUSTRATION BIOEROSION CECIDOTAXONOMY ICHNOTAXONOMY RODOCANALIS SYMBIOSIS |
title_short |
Putative hydroid symbionts recorded by bioclaustrations in fossil molluscan shells: a revision and reinterpretation of the cecidogenus Rodocanalis |
title_full |
Putative hydroid symbionts recorded by bioclaustrations in fossil molluscan shells: a revision and reinterpretation of the cecidogenus Rodocanalis |
title_fullStr |
Putative hydroid symbionts recorded by bioclaustrations in fossil molluscan shells: a revision and reinterpretation of the cecidogenus Rodocanalis |
title_full_unstemmed |
Putative hydroid symbionts recorded by bioclaustrations in fossil molluscan shells: a revision and reinterpretation of the cecidogenus Rodocanalis |
title_sort |
Putative hydroid symbionts recorded by bioclaustrations in fossil molluscan shells: a revision and reinterpretation of the cecidogenus Rodocanalis |
dc.creator.none.fl_str_mv |
Wisshak, Max Schneider, Simon Mikulás, Radek Richiano, Sebastián Miguel Ramil, Fran Wilson, Mark A. |
author |
Wisshak, Max |
author_facet |
Wisshak, Max Schneider, Simon Mikulás, Radek Richiano, Sebastián Miguel Ramil, Fran Wilson, Mark A. |
author_role |
author |
author2 |
Schneider, Simon Mikulás, Radek Richiano, Sebastián Miguel Ramil, Fran Wilson, Mark A. |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
BIOCLAUSTRATION BIOEROSION CECIDOTAXONOMY ICHNOTAXONOMY RODOCANALIS SYMBIOSIS |
topic |
BIOCLAUSTRATION BIOEROSION CECIDOTAXONOMY ICHNOTAXONOMY RODOCANALIS SYMBIOSIS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The fossil record yields a peculiar phenomenon in different kinds of molluscan shells: bioclaustrations formed around (epi)symbionts during growth of the hosts´ shell margin. Four morphologies, two of them formerly considered bioerosion traces, are here united in the parataxonomy of bioclaustration structures under the revised cecidogenus Rodocanalis. These are: (1) simple linear grooves (Rodocanalis linearis csp. nov.) formed below the periostracum in Pleistocene to Recent endobenthic bivalves; (2) series of distally ramifying grooves (Rodocanalis runicus) in Silurian orthoconic nautiloids; (3) irregular networks of grooves (Rodocanalis reticulatus) in Jurassic to Cretaceous bivalves and gastropods; and (4) regular reticulate networks (Rodocanalis geometricus csp. nov.) in Jurassic to Cretaceous gastropods. The linear grooves might be associated with commensal worms, while multiple lines of reasoning point towards hydrozoan symbionts in the case of the branched and anastomosing grooves. After the hydrozoan larva settles and the first polyp becomes fixed on the calcareous ostracum at the shell margin, the process of bioclaustration commences when the periostracum surrounds the base of the polyp, which moves towards the external shell surface, while the hydrorhizae develop in the only possible direction: towards the shell growth margin. This enables new polyps to originate at the shell edge by budding, while the bioclaustration of the stolonial hydrorhizae advances. We consider the nature of this symbiotic relationship as mutualism, with the hydrozoan symbiont taking advantage of the host´s feeding current or food debris, and the molluscan host profiting from the defensive capability of the hydrozoan´s cnidocysts. Fil: Wisshak, Max. No especifíca; Fil: Schneider, Simon. No especifíca; Fil: Mikulás, Radek. Czech Academy of Sciences; República Checa Fil: Richiano, Sebastián Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Geología y Paleontología; Argentina Fil: Ramil, Fran. Universidad de Vigo; España Fil: Wilson, Mark A.. The College of Wooster; Estados Unidos |
description |
The fossil record yields a peculiar phenomenon in different kinds of molluscan shells: bioclaustrations formed around (epi)symbionts during growth of the hosts´ shell margin. Four morphologies, two of them formerly considered bioerosion traces, are here united in the parataxonomy of bioclaustration structures under the revised cecidogenus Rodocanalis. These are: (1) simple linear grooves (Rodocanalis linearis csp. nov.) formed below the periostracum in Pleistocene to Recent endobenthic bivalves; (2) series of distally ramifying grooves (Rodocanalis runicus) in Silurian orthoconic nautiloids; (3) irregular networks of grooves (Rodocanalis reticulatus) in Jurassic to Cretaceous bivalves and gastropods; and (4) regular reticulate networks (Rodocanalis geometricus csp. nov.) in Jurassic to Cretaceous gastropods. The linear grooves might be associated with commensal worms, while multiple lines of reasoning point towards hydrozoan symbionts in the case of the branched and anastomosing grooves. After the hydrozoan larva settles and the first polyp becomes fixed on the calcareous ostracum at the shell margin, the process of bioclaustration commences when the periostracum surrounds the base of the polyp, which moves towards the external shell surface, while the hydrorhizae develop in the only possible direction: towards the shell growth margin. This enables new polyps to originate at the shell edge by budding, while the bioclaustration of the stolonial hydrorhizae advances. We consider the nature of this symbiotic relationship as mutualism, with the hydrozoan symbiont taking advantage of the host´s feeding current or food debris, and the molluscan host profiting from the defensive capability of the hydrozoan´s cnidocysts. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/233840 Wisshak, Max; Schneider, Simon; Mikulás, Radek; Richiano, Sebastián Miguel; Ramil, Fran; et al.; Putative hydroid symbionts recorded by bioclaustrations in fossil molluscan shells: a revision and reinterpretation of the cecidogenus Rodocanalis; John Wiley & Sons; Papers in Palaeontology; 9; 2; 3-2023; 1-21 2056-2802 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/233840 |
identifier_str_mv |
Wisshak, Max; Schneider, Simon; Mikulás, Radek; Richiano, Sebastián Miguel; Ramil, Fran; et al.; Putative hydroid symbionts recorded by bioclaustrations in fossil molluscan shells: a revision and reinterpretation of the cecidogenus Rodocanalis; John Wiley & Sons; Papers in Palaeontology; 9; 2; 3-2023; 1-21 2056-2802 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1002/spp2.1484 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
John Wiley & Sons |
publisher.none.fl_str_mv |
John Wiley & Sons |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269148164390912 |
score |
13.13397 |