Automatic Pronunciation Assessment Systems for English Students from Argentina
- Autores
- Vidal, Jazmín; Bonomi, Cyntia; Riera, Pablo Ernesto; Ferrer, Luciana
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- English proficiency plays a critical role in educational and professional opportunities across Latin America. However, limited access to trained teachers and supplementary resources creates barriers for learners from disadvantaged backgrounds, particularly in Argentina. To address pronunciation learning, this work introduces a computer-assisted pronunciation training (CAPT) system tailored to Argentinian English learners. The approach relies on a novel annotated speech database—EpaDB—specifically designed for evaluating pronunciation at the phone level. To overcome data scarcity, the system leverages transfer learning and self-supervised models (e.g., WavLM+) to extract informative features and train lightweight classifiers. Two methods are compared: mispronunciation detection using non-native data, and phone recognition using native speech. Results demonstrate that models trained on non-native data yield significantly lower error costs and improved scoring accuracy, particularly when matched to the target population. This research highlights the importance of localized datasets and evaluation strategies in developing effective and accessible pronunciation tools for low-resource settings.
Fil: Vidal, Jazmín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Bonomi, Cyntia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Fil: Riera, Pablo Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Ferrer, Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina - Materia
-
Pronunciation Scaoring
Computer-assisted pronunciation training
Argentina - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/261670
Ver los metadatos del registro completo
id |
CONICETDig_d9d5322b4e29df76bf75d3f16ca69add |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/261670 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Automatic Pronunciation Assessment Systems for English Students from ArgentinaVidal, JazmínBonomi, CyntiaRiera, Pablo ErnestoFerrer, LucianaPronunciation ScaoringComputer-assisted pronunciation trainingArgentinahttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2English proficiency plays a critical role in educational and professional opportunities across Latin America. However, limited access to trained teachers and supplementary resources creates barriers for learners from disadvantaged backgrounds, particularly in Argentina. To address pronunciation learning, this work introduces a computer-assisted pronunciation training (CAPT) system tailored to Argentinian English learners. The approach relies on a novel annotated speech database—EpaDB—specifically designed for evaluating pronunciation at the phone level. To overcome data scarcity, the system leverages transfer learning and self-supervised models (e.g., WavLM+) to extract informative features and train lightweight classifiers. Two methods are compared: mispronunciation detection using non-native data, and phone recognition using native speech. Results demonstrate that models trained on non-native data yield significantly lower error costs and improved scoring accuracy, particularly when matched to the target population. This research highlights the importance of localized datasets and evaluation strategies in developing effective and accessible pronunciation tools for low-resource settings.Fil: Vidal, Jazmín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Bonomi, Cyntia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaFil: Riera, Pablo Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Ferrer, Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaAssociation for Computing Machinery2024-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/261670Vidal, Jazmín; Bonomi, Cyntia; Riera, Pablo Ernesto; Ferrer, Luciana; Automatic Pronunciation Assessment Systems for English Students from Argentina; Association for Computing Machinery; Communications Of The Acm; 67; 8; 8-2024; 63-670001-0782CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://dl.acm.org/doi/10.1145/3653326info:eu-repo/semantics/altIdentifier/doi/10.1145/3653326info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:08:37Zoai:ri.conicet.gov.ar:11336/261670instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:08:38.053CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Automatic Pronunciation Assessment Systems for English Students from Argentina |
title |
Automatic Pronunciation Assessment Systems for English Students from Argentina |
spellingShingle |
Automatic Pronunciation Assessment Systems for English Students from Argentina Vidal, Jazmín Pronunciation Scaoring Computer-assisted pronunciation training Argentina |
title_short |
Automatic Pronunciation Assessment Systems for English Students from Argentina |
title_full |
Automatic Pronunciation Assessment Systems for English Students from Argentina |
title_fullStr |
Automatic Pronunciation Assessment Systems for English Students from Argentina |
title_full_unstemmed |
Automatic Pronunciation Assessment Systems for English Students from Argentina |
title_sort |
Automatic Pronunciation Assessment Systems for English Students from Argentina |
dc.creator.none.fl_str_mv |
Vidal, Jazmín Bonomi, Cyntia Riera, Pablo Ernesto Ferrer, Luciana |
author |
Vidal, Jazmín |
author_facet |
Vidal, Jazmín Bonomi, Cyntia Riera, Pablo Ernesto Ferrer, Luciana |
author_role |
author |
author2 |
Bonomi, Cyntia Riera, Pablo Ernesto Ferrer, Luciana |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Pronunciation Scaoring Computer-assisted pronunciation training Argentina |
topic |
Pronunciation Scaoring Computer-assisted pronunciation training Argentina |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
English proficiency plays a critical role in educational and professional opportunities across Latin America. However, limited access to trained teachers and supplementary resources creates barriers for learners from disadvantaged backgrounds, particularly in Argentina. To address pronunciation learning, this work introduces a computer-assisted pronunciation training (CAPT) system tailored to Argentinian English learners. The approach relies on a novel annotated speech database—EpaDB—specifically designed for evaluating pronunciation at the phone level. To overcome data scarcity, the system leverages transfer learning and self-supervised models (e.g., WavLM+) to extract informative features and train lightweight classifiers. Two methods are compared: mispronunciation detection using non-native data, and phone recognition using native speech. Results demonstrate that models trained on non-native data yield significantly lower error costs and improved scoring accuracy, particularly when matched to the target population. This research highlights the importance of localized datasets and evaluation strategies in developing effective and accessible pronunciation tools for low-resource settings. Fil: Vidal, Jazmín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina Fil: Bonomi, Cyntia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina Fil: Riera, Pablo Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina Fil: Ferrer, Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina |
description |
English proficiency plays a critical role in educational and professional opportunities across Latin America. However, limited access to trained teachers and supplementary resources creates barriers for learners from disadvantaged backgrounds, particularly in Argentina. To address pronunciation learning, this work introduces a computer-assisted pronunciation training (CAPT) system tailored to Argentinian English learners. The approach relies on a novel annotated speech database—EpaDB—specifically designed for evaluating pronunciation at the phone level. To overcome data scarcity, the system leverages transfer learning and self-supervised models (e.g., WavLM+) to extract informative features and train lightweight classifiers. Two methods are compared: mispronunciation detection using non-native data, and phone recognition using native speech. Results demonstrate that models trained on non-native data yield significantly lower error costs and improved scoring accuracy, particularly when matched to the target population. This research highlights the importance of localized datasets and evaluation strategies in developing effective and accessible pronunciation tools for low-resource settings. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/261670 Vidal, Jazmín; Bonomi, Cyntia; Riera, Pablo Ernesto; Ferrer, Luciana; Automatic Pronunciation Assessment Systems for English Students from Argentina; Association for Computing Machinery; Communications Of The Acm; 67; 8; 8-2024; 63-67 0001-0782 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/261670 |
identifier_str_mv |
Vidal, Jazmín; Bonomi, Cyntia; Riera, Pablo Ernesto; Ferrer, Luciana; Automatic Pronunciation Assessment Systems for English Students from Argentina; Association for Computing Machinery; Communications Of The Acm; 67; 8; 8-2024; 63-67 0001-0782 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://dl.acm.org/doi/10.1145/3653326 info:eu-repo/semantics/altIdentifier/doi/10.1145/3653326 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Association for Computing Machinery |
publisher.none.fl_str_mv |
Association for Computing Machinery |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270052693311488 |
score |
13.13397 |