Determination of the Local Electric Field at Au/SAM Interfaces Using the Vibrational Stark Effect

Autores
Staffa, Jana K.; Lorenz, Lisa; Stolarski, Michael; Murgida, Daniel Horacio; Zebger, Ingo; Utesch, Tillmann; Kozuch, Jacek; Hildebrandt, Peter
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A comprehensive understanding of physical and chemical processes at biological membranes requires the knowledge of the interfacial electric field which is a key parameter for controlling molecular structures and reaction dynamics. An appropriate approach is based on the vibrational Stark effect (VSE) that exploits the electric-field dependent perturbation of localized vibrational modes. In this work, 6-mercaptohexanenitrile (C5CN) and 7-mercaptoheptanenitrile (C6CN) were used to form self-assembled monolayers (SAMs) on a nanostructured Au electrode as a simple mimic for biomembranes. The C - N stretching mode was probed by surface enhanced infrared absorption (SEIRA) spectroscopy to determine the frequency and intensity as a function of the electrode potential. The intensity variations were related to potential-dependent changes of the nitrile orientation with respect to the electric field. Supported by electrochemical impedance spectroscopy, molecular dynamics simulations, and quantum chemical calculations the frequency changes were translated into profiles of the interfacial electric field, affording field strengths up to 4 × 108 V/m (C6CN) and 1.3 × 109 V/m (C5CN) between +0.4 and 0.4 V (vs Ag/AgCl). These profiles compare very well with the predictions of a simple electrostatic model developed in this work. This model is shown to be applicable to different types of electrode/SAM systems and allows for a quick estimate of interfacial electric fields. Finally, the implications for electric-field dependent processes at biomembranes are discussed.
Fil: Staffa, Jana K.. Technishe Universitat Berlin; Alemania
Fil: Lorenz, Lisa. Technishe Universitat Berlin; Alemania
Fil: Stolarski, Michael. Technishe Universitat Berlin; Alemania
Fil: Murgida, Daniel Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: Zebger, Ingo. Technishe Universitat Berlin; Alemania
Fil: Utesch, Tillmann. Technishe Universitat Berlin; Alemania
Fil: Kozuch, Jacek. Technishe Universitat Berlin; Alemania
Fil: Hildebrandt, Peter. Technishe Universitat Berlin; Alemania
Materia
Seira
Stark Effect
Electric Fields
Sams
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/65340

id CONICETDig_d950eddf21ed10e57eab707ce81c20ef
oai_identifier_str oai:ri.conicet.gov.ar:11336/65340
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Determination of the Local Electric Field at Au/SAM Interfaces Using the Vibrational Stark EffectStaffa, Jana K.Lorenz, LisaStolarski, MichaelMurgida, Daniel HoracioZebger, IngoUtesch, TillmannKozuch, JacekHildebrandt, PeterSeiraStark EffectElectric FieldsSamshttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1A comprehensive understanding of physical and chemical processes at biological membranes requires the knowledge of the interfacial electric field which is a key parameter for controlling molecular structures and reaction dynamics. An appropriate approach is based on the vibrational Stark effect (VSE) that exploits the electric-field dependent perturbation of localized vibrational modes. In this work, 6-mercaptohexanenitrile (C5CN) and 7-mercaptoheptanenitrile (C6CN) were used to form self-assembled monolayers (SAMs) on a nanostructured Au electrode as a simple mimic for biomembranes. The C - N stretching mode was probed by surface enhanced infrared absorption (SEIRA) spectroscopy to determine the frequency and intensity as a function of the electrode potential. The intensity variations were related to potential-dependent changes of the nitrile orientation with respect to the electric field. Supported by electrochemical impedance spectroscopy, molecular dynamics simulations, and quantum chemical calculations the frequency changes were translated into profiles of the interfacial electric field, affording field strengths up to 4 × 108 V/m (C6CN) and 1.3 × 109 V/m (C5CN) between +0.4 and 0.4 V (vs Ag/AgCl). These profiles compare very well with the predictions of a simple electrostatic model developed in this work. This model is shown to be applicable to different types of electrode/SAM systems and allows for a quick estimate of interfacial electric fields. Finally, the implications for electric-field dependent processes at biomembranes are discussed.Fil: Staffa, Jana K.. Technishe Universitat Berlin; AlemaniaFil: Lorenz, Lisa. Technishe Universitat Berlin; AlemaniaFil: Stolarski, Michael. Technishe Universitat Berlin; AlemaniaFil: Murgida, Daniel Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Zebger, Ingo. Technishe Universitat Berlin; AlemaniaFil: Utesch, Tillmann. Technishe Universitat Berlin; AlemaniaFil: Kozuch, Jacek. Technishe Universitat Berlin; AlemaniaFil: Hildebrandt, Peter. Technishe Universitat Berlin; AlemaniaAmerican Chemical Society2017-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/65340Staffa, Jana K.; Lorenz, Lisa; Stolarski, Michael; Murgida, Daniel Horacio; Zebger, Ingo; et al.; Determination of the Local Electric Field at Au/SAM Interfaces Using the Vibrational Stark Effect; American Chemical Society; Journal of Physical Chemistry C; 121; 40; 10-2017; 22274-222851932-7447CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/10.1021/acs.jpcc.7b08434info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.jpcc.7b08434info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:08:11Zoai:ri.conicet.gov.ar:11336/65340instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:08:12.187CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Determination of the Local Electric Field at Au/SAM Interfaces Using the Vibrational Stark Effect
title Determination of the Local Electric Field at Au/SAM Interfaces Using the Vibrational Stark Effect
spellingShingle Determination of the Local Electric Field at Au/SAM Interfaces Using the Vibrational Stark Effect
Staffa, Jana K.
Seira
Stark Effect
Electric Fields
Sams
title_short Determination of the Local Electric Field at Au/SAM Interfaces Using the Vibrational Stark Effect
title_full Determination of the Local Electric Field at Au/SAM Interfaces Using the Vibrational Stark Effect
title_fullStr Determination of the Local Electric Field at Au/SAM Interfaces Using the Vibrational Stark Effect
title_full_unstemmed Determination of the Local Electric Field at Au/SAM Interfaces Using the Vibrational Stark Effect
title_sort Determination of the Local Electric Field at Au/SAM Interfaces Using the Vibrational Stark Effect
dc.creator.none.fl_str_mv Staffa, Jana K.
Lorenz, Lisa
Stolarski, Michael
Murgida, Daniel Horacio
Zebger, Ingo
Utesch, Tillmann
Kozuch, Jacek
Hildebrandt, Peter
author Staffa, Jana K.
author_facet Staffa, Jana K.
Lorenz, Lisa
Stolarski, Michael
Murgida, Daniel Horacio
Zebger, Ingo
Utesch, Tillmann
Kozuch, Jacek
Hildebrandt, Peter
author_role author
author2 Lorenz, Lisa
Stolarski, Michael
Murgida, Daniel Horacio
Zebger, Ingo
Utesch, Tillmann
Kozuch, Jacek
Hildebrandt, Peter
author2_role author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Seira
Stark Effect
Electric Fields
Sams
topic Seira
Stark Effect
Electric Fields
Sams
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A comprehensive understanding of physical and chemical processes at biological membranes requires the knowledge of the interfacial electric field which is a key parameter for controlling molecular structures and reaction dynamics. An appropriate approach is based on the vibrational Stark effect (VSE) that exploits the electric-field dependent perturbation of localized vibrational modes. In this work, 6-mercaptohexanenitrile (C5CN) and 7-mercaptoheptanenitrile (C6CN) were used to form self-assembled monolayers (SAMs) on a nanostructured Au electrode as a simple mimic for biomembranes. The C - N stretching mode was probed by surface enhanced infrared absorption (SEIRA) spectroscopy to determine the frequency and intensity as a function of the electrode potential. The intensity variations were related to potential-dependent changes of the nitrile orientation with respect to the electric field. Supported by electrochemical impedance spectroscopy, molecular dynamics simulations, and quantum chemical calculations the frequency changes were translated into profiles of the interfacial electric field, affording field strengths up to 4 × 108 V/m (C6CN) and 1.3 × 109 V/m (C5CN) between +0.4 and 0.4 V (vs Ag/AgCl). These profiles compare very well with the predictions of a simple electrostatic model developed in this work. This model is shown to be applicable to different types of electrode/SAM systems and allows for a quick estimate of interfacial electric fields. Finally, the implications for electric-field dependent processes at biomembranes are discussed.
Fil: Staffa, Jana K.. Technishe Universitat Berlin; Alemania
Fil: Lorenz, Lisa. Technishe Universitat Berlin; Alemania
Fil: Stolarski, Michael. Technishe Universitat Berlin; Alemania
Fil: Murgida, Daniel Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: Zebger, Ingo. Technishe Universitat Berlin; Alemania
Fil: Utesch, Tillmann. Technishe Universitat Berlin; Alemania
Fil: Kozuch, Jacek. Technishe Universitat Berlin; Alemania
Fil: Hildebrandt, Peter. Technishe Universitat Berlin; Alemania
description A comprehensive understanding of physical and chemical processes at biological membranes requires the knowledge of the interfacial electric field which is a key parameter for controlling molecular structures and reaction dynamics. An appropriate approach is based on the vibrational Stark effect (VSE) that exploits the electric-field dependent perturbation of localized vibrational modes. In this work, 6-mercaptohexanenitrile (C5CN) and 7-mercaptoheptanenitrile (C6CN) were used to form self-assembled monolayers (SAMs) on a nanostructured Au electrode as a simple mimic for biomembranes. The C - N stretching mode was probed by surface enhanced infrared absorption (SEIRA) spectroscopy to determine the frequency and intensity as a function of the electrode potential. The intensity variations were related to potential-dependent changes of the nitrile orientation with respect to the electric field. Supported by electrochemical impedance spectroscopy, molecular dynamics simulations, and quantum chemical calculations the frequency changes were translated into profiles of the interfacial electric field, affording field strengths up to 4 × 108 V/m (C6CN) and 1.3 × 109 V/m (C5CN) between +0.4 and 0.4 V (vs Ag/AgCl). These profiles compare very well with the predictions of a simple electrostatic model developed in this work. This model is shown to be applicable to different types of electrode/SAM systems and allows for a quick estimate of interfacial electric fields. Finally, the implications for electric-field dependent processes at biomembranes are discussed.
publishDate 2017
dc.date.none.fl_str_mv 2017-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/65340
Staffa, Jana K.; Lorenz, Lisa; Stolarski, Michael; Murgida, Daniel Horacio; Zebger, Ingo; et al.; Determination of the Local Electric Field at Au/SAM Interfaces Using the Vibrational Stark Effect; American Chemical Society; Journal of Physical Chemistry C; 121; 40; 10-2017; 22274-22285
1932-7447
CONICET Digital
CONICET
url http://hdl.handle.net/11336/65340
identifier_str_mv Staffa, Jana K.; Lorenz, Lisa; Stolarski, Michael; Murgida, Daniel Horacio; Zebger, Ingo; et al.; Determination of the Local Electric Field at Au/SAM Interfaces Using the Vibrational Stark Effect; American Chemical Society; Journal of Physical Chemistry C; 121; 40; 10-2017; 22274-22285
1932-7447
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/10.1021/acs.jpcc.7b08434
info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.jpcc.7b08434
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980383407210496
score 12.993085