Vibrational stark shift spectroscopy of catalysts under the influence of electric fields at electrode–solution interfaces

Autores
Bhattacharyya, Dhritiman; Videla, Pablo Ernesto; Cattaneo, Mauricio; Batista, Victor S.; Lian, Tianquan; Kubiak, Clifford P.
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
External control of chemical processes is a subject of widespread interest in chemical research, including control of electrocatalytic processes with significant promise in energy research. The electrochemical double-layer is the nanoscale region next to the electrode/electrolyte interface where chemical reactions typically occur. Understanding the effects of electric fields within the electrochemical double layer requires a combination of synthesis, electrochemistry, spectroscopy, and theory. In particular, vibrational sum frequency generation (VSFG) spectroscopy is a powerful technique to probe the response of molecular catalysts at the electrode interface under bias. Fundamental understanding can be obtained via synthetic tuning of the adsorbed molecular catalysts on the electrode surface and by combining experimental VSFG data with theoretical modelling of the Stark shift response. The resulting insights at the molecular level are particularly valuable for the development of new methodologies to control and characterize catalysts confined to electrode surfaces. This Perspective article is focused on how systematic modifications of molecules anchored to surfaces report information concerning the geometric, energetic, and electronic parameters of catalysts under bias attached to electrode surfaces.
Fil: Bhattacharyya, Dhritiman. University of Emory; Estados Unidos
Fil: Videla, Pablo Ernesto. University of Yale; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: Cattaneo, Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Química del Noroeste. Universidad Nacional de Tucumán. Facultad de Bioquímica, Química y Farmacia. Instituto de Química del Noroeste; Argentina
Fil: Batista, Victor S.. University of Yale; Estados Unidos
Fil: Lian, Tianquan. University of Emory; Estados Unidos
Fil: Kubiak, Clifford P.. University of California at San Diego; Estados Unidos
Materia
VIBRATIONAL STARK SHIFT SPECTROSCOPY
MOLECULAR CATALYSTS
INFLUENCE OF ELCTRIC FIELDS
ELECTRODE SURFACE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/147393

id CONICETDig_8456e99d3fce914a393b3ceaa0dcda19
oai_identifier_str oai:ri.conicet.gov.ar:11336/147393
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Vibrational stark shift spectroscopy of catalysts under the influence of electric fields at electrode–solution interfacesBhattacharyya, DhritimanVidela, Pablo ErnestoCattaneo, MauricioBatista, Victor S.Lian, TianquanKubiak, Clifford P.VIBRATIONAL STARK SHIFT SPECTROSCOPYMOLECULAR CATALYSTSINFLUENCE OF ELCTRIC FIELDSELECTRODE SURFACEhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1External control of chemical processes is a subject of widespread interest in chemical research, including control of electrocatalytic processes with significant promise in energy research. The electrochemical double-layer is the nanoscale region next to the electrode/electrolyte interface where chemical reactions typically occur. Understanding the effects of electric fields within the electrochemical double layer requires a combination of synthesis, electrochemistry, spectroscopy, and theory. In particular, vibrational sum frequency generation (VSFG) spectroscopy is a powerful technique to probe the response of molecular catalysts at the electrode interface under bias. Fundamental understanding can be obtained via synthetic tuning of the adsorbed molecular catalysts on the electrode surface and by combining experimental VSFG data with theoretical modelling of the Stark shift response. The resulting insights at the molecular level are particularly valuable for the development of new methodologies to control and characterize catalysts confined to electrode surfaces. This Perspective article is focused on how systematic modifications of molecules anchored to surfaces report information concerning the geometric, energetic, and electronic parameters of catalysts under bias attached to electrode surfaces.Fil: Bhattacharyya, Dhritiman. University of Emory; Estados UnidosFil: Videla, Pablo Ernesto. University of Yale; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Cattaneo, Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Química del Noroeste. Universidad Nacional de Tucumán. Facultad de Bioquímica, Química y Farmacia. Instituto de Química del Noroeste; ArgentinaFil: Batista, Victor S.. University of Yale; Estados UnidosFil: Lian, Tianquan. University of Emory; Estados UnidosFil: Kubiak, Clifford P.. University of California at San Diego; Estados UnidosRoyal Society of Chemistry2021-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/147393Bhattacharyya, Dhritiman; Videla, Pablo Ernesto; Cattaneo, Mauricio; Batista, Victor S.; Lian, Tianquan; et al.; Vibrational stark shift spectroscopy of catalysts under the influence of electric fields at electrode–solution interfaces; Royal Society of Chemistry; Chemical Science; 12; 30; 7-2021; 10131-101492041-65202041-6539CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1039/D1SC01876Kinfo:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/content/articlelanding/2021/SC/D1SC01876Kinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:37:20Zoai:ri.conicet.gov.ar:11336/147393instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:37:20.513CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Vibrational stark shift spectroscopy of catalysts under the influence of electric fields at electrode–solution interfaces
title Vibrational stark shift spectroscopy of catalysts under the influence of electric fields at electrode–solution interfaces
spellingShingle Vibrational stark shift spectroscopy of catalysts under the influence of electric fields at electrode–solution interfaces
Bhattacharyya, Dhritiman
VIBRATIONAL STARK SHIFT SPECTROSCOPY
MOLECULAR CATALYSTS
INFLUENCE OF ELCTRIC FIELDS
ELECTRODE SURFACE
title_short Vibrational stark shift spectroscopy of catalysts under the influence of electric fields at electrode–solution interfaces
title_full Vibrational stark shift spectroscopy of catalysts under the influence of electric fields at electrode–solution interfaces
title_fullStr Vibrational stark shift spectroscopy of catalysts under the influence of electric fields at electrode–solution interfaces
title_full_unstemmed Vibrational stark shift spectroscopy of catalysts under the influence of electric fields at electrode–solution interfaces
title_sort Vibrational stark shift spectroscopy of catalysts under the influence of electric fields at electrode–solution interfaces
dc.creator.none.fl_str_mv Bhattacharyya, Dhritiman
Videla, Pablo Ernesto
Cattaneo, Mauricio
Batista, Victor S.
Lian, Tianquan
Kubiak, Clifford P.
author Bhattacharyya, Dhritiman
author_facet Bhattacharyya, Dhritiman
Videla, Pablo Ernesto
Cattaneo, Mauricio
Batista, Victor S.
Lian, Tianquan
Kubiak, Clifford P.
author_role author
author2 Videla, Pablo Ernesto
Cattaneo, Mauricio
Batista, Victor S.
Lian, Tianquan
Kubiak, Clifford P.
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv VIBRATIONAL STARK SHIFT SPECTROSCOPY
MOLECULAR CATALYSTS
INFLUENCE OF ELCTRIC FIELDS
ELECTRODE SURFACE
topic VIBRATIONAL STARK SHIFT SPECTROSCOPY
MOLECULAR CATALYSTS
INFLUENCE OF ELCTRIC FIELDS
ELECTRODE SURFACE
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv External control of chemical processes is a subject of widespread interest in chemical research, including control of electrocatalytic processes with significant promise in energy research. The electrochemical double-layer is the nanoscale region next to the electrode/electrolyte interface where chemical reactions typically occur. Understanding the effects of electric fields within the electrochemical double layer requires a combination of synthesis, electrochemistry, spectroscopy, and theory. In particular, vibrational sum frequency generation (VSFG) spectroscopy is a powerful technique to probe the response of molecular catalysts at the electrode interface under bias. Fundamental understanding can be obtained via synthetic tuning of the adsorbed molecular catalysts on the electrode surface and by combining experimental VSFG data with theoretical modelling of the Stark shift response. The resulting insights at the molecular level are particularly valuable for the development of new methodologies to control and characterize catalysts confined to electrode surfaces. This Perspective article is focused on how systematic modifications of molecules anchored to surfaces report information concerning the geometric, energetic, and electronic parameters of catalysts under bias attached to electrode surfaces.
Fil: Bhattacharyya, Dhritiman. University of Emory; Estados Unidos
Fil: Videla, Pablo Ernesto. University of Yale; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: Cattaneo, Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Química del Noroeste. Universidad Nacional de Tucumán. Facultad de Bioquímica, Química y Farmacia. Instituto de Química del Noroeste; Argentina
Fil: Batista, Victor S.. University of Yale; Estados Unidos
Fil: Lian, Tianquan. University of Emory; Estados Unidos
Fil: Kubiak, Clifford P.. University of California at San Diego; Estados Unidos
description External control of chemical processes is a subject of widespread interest in chemical research, including control of electrocatalytic processes with significant promise in energy research. The electrochemical double-layer is the nanoscale region next to the electrode/electrolyte interface where chemical reactions typically occur. Understanding the effects of electric fields within the electrochemical double layer requires a combination of synthesis, electrochemistry, spectroscopy, and theory. In particular, vibrational sum frequency generation (VSFG) spectroscopy is a powerful technique to probe the response of molecular catalysts at the electrode interface under bias. Fundamental understanding can be obtained via synthetic tuning of the adsorbed molecular catalysts on the electrode surface and by combining experimental VSFG data with theoretical modelling of the Stark shift response. The resulting insights at the molecular level are particularly valuable for the development of new methodologies to control and characterize catalysts confined to electrode surfaces. This Perspective article is focused on how systematic modifications of molecules anchored to surfaces report information concerning the geometric, energetic, and electronic parameters of catalysts under bias attached to electrode surfaces.
publishDate 2021
dc.date.none.fl_str_mv 2021-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/147393
Bhattacharyya, Dhritiman; Videla, Pablo Ernesto; Cattaneo, Mauricio; Batista, Victor S.; Lian, Tianquan; et al.; Vibrational stark shift spectroscopy of catalysts under the influence of electric fields at electrode–solution interfaces; Royal Society of Chemistry; Chemical Science; 12; 30; 7-2021; 10131-10149
2041-6520
2041-6539
CONICET Digital
CONICET
url http://hdl.handle.net/11336/147393
identifier_str_mv Bhattacharyya, Dhritiman; Videla, Pablo Ernesto; Cattaneo, Mauricio; Batista, Victor S.; Lian, Tianquan; et al.; Vibrational stark shift spectroscopy of catalysts under the influence of electric fields at electrode–solution interfaces; Royal Society of Chemistry; Chemical Science; 12; 30; 7-2021; 10131-10149
2041-6520
2041-6539
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1039/D1SC01876K
info:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/content/articlelanding/2021/SC/D1SC01876K
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Royal Society of Chemistry
publisher.none.fl_str_mv Royal Society of Chemistry
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083494667616256
score 13.22299