Dimensional Affect Recognition from HRV: an Approach Based on Supervised SOM and ELM
- Autores
- Bugnon, Leandro Ariel; Calvo, Rafael; Milone, Diego Humberto
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Dimensional affect recognition is a challenging topic and current techniques do not yet provide the accuracy necessary for HCI applications. In this work we propose two new methods. The first is a novel self-organizing model that learns from similarity between features and affects. This method produces a graphical representation of the multidimensional data which may assist the expert analysis. The second method uses extreme learning machines, an emerging artificial neural network model. Aiming for minimum intrusiveness, we use only the heart rate variability, which can be recorded using a small set of sensors. The methods were validated with two datasets. The first is composed of 16 sessions with different participants and was used to evaluate the models in a classification task. The second one was the publicly available Remote Collaborative and Affective Interaction (RECOLA) dataset, which was used for dimensional affect estimation. The performance evaluation used the kappa score, unweighted average recall and the concordance correlation coefficient. The concordance coefficient on the RECOLA test partition was 0.421 in arousal and 0.321 in valence. Results shows that our models outperform state-of-the-art models on the same data and provides new ways to analyze affective states.
Fil: Bugnon, Leandro Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Calvo, Rafael. University of Sydney; Australia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina - Materia
-
Physiological Measures
Affect Sensing And Analysis
Supervised Self-Organization
Extream Learning Machines
Dimensional Affect Estimation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/47577
Ver los metadatos del registro completo
id |
CONICETDig_d88f0d19e5768ba464e9978cd19ba20c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/47577 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Dimensional Affect Recognition from HRV: an Approach Based on Supervised SOM and ELMBugnon, Leandro ArielCalvo, RafaelMilone, Diego HumbertoPhysiological MeasuresAffect Sensing And AnalysisSupervised Self-OrganizationExtream Learning MachinesDimensional Affect Estimationhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Dimensional affect recognition is a challenging topic and current techniques do not yet provide the accuracy necessary for HCI applications. In this work we propose two new methods. The first is a novel self-organizing model that learns from similarity between features and affects. This method produces a graphical representation of the multidimensional data which may assist the expert analysis. The second method uses extreme learning machines, an emerging artificial neural network model. Aiming for minimum intrusiveness, we use only the heart rate variability, which can be recorded using a small set of sensors. The methods were validated with two datasets. The first is composed of 16 sessions with different participants and was used to evaluate the models in a classification task. The second one was the publicly available Remote Collaborative and Affective Interaction (RECOLA) dataset, which was used for dimensional affect estimation. The performance evaluation used the kappa score, unweighted average recall and the concordance correlation coefficient. The concordance coefficient on the RECOLA test partition was 0.421 in arousal and 0.321 in valence. Results shows that our models outperform state-of-the-art models on the same data and provides new ways to analyze affective states.Fil: Bugnon, Leandro Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Calvo, Rafael. University of Sydney; Australia. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaInstitute of Electrical and Electronics Engineers2017-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/47577Bugnon, Leandro Ariel; Calvo, Rafael; Milone, Diego Humberto; Dimensional Affect Recognition from HRV: an Approach Based on Supervised SOM and ELM; Institute of Electrical and Electronics Engineers; IEEE Transactions on Affective Computing; 10-20171949-3045CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://ieeexplore.ieee.org/document/8070380/info:eu-repo/semantics/altIdentifier/doi/10.1109/TAFFC.2017.2763943info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:48:31Zoai:ri.conicet.gov.ar:11336/47577instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:48:31.909CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Dimensional Affect Recognition from HRV: an Approach Based on Supervised SOM and ELM |
title |
Dimensional Affect Recognition from HRV: an Approach Based on Supervised SOM and ELM |
spellingShingle |
Dimensional Affect Recognition from HRV: an Approach Based on Supervised SOM and ELM Bugnon, Leandro Ariel Physiological Measures Affect Sensing And Analysis Supervised Self-Organization Extream Learning Machines Dimensional Affect Estimation |
title_short |
Dimensional Affect Recognition from HRV: an Approach Based on Supervised SOM and ELM |
title_full |
Dimensional Affect Recognition from HRV: an Approach Based on Supervised SOM and ELM |
title_fullStr |
Dimensional Affect Recognition from HRV: an Approach Based on Supervised SOM and ELM |
title_full_unstemmed |
Dimensional Affect Recognition from HRV: an Approach Based on Supervised SOM and ELM |
title_sort |
Dimensional Affect Recognition from HRV: an Approach Based on Supervised SOM and ELM |
dc.creator.none.fl_str_mv |
Bugnon, Leandro Ariel Calvo, Rafael Milone, Diego Humberto |
author |
Bugnon, Leandro Ariel |
author_facet |
Bugnon, Leandro Ariel Calvo, Rafael Milone, Diego Humberto |
author_role |
author |
author2 |
Calvo, Rafael Milone, Diego Humberto |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Physiological Measures Affect Sensing And Analysis Supervised Self-Organization Extream Learning Machines Dimensional Affect Estimation |
topic |
Physiological Measures Affect Sensing And Analysis Supervised Self-Organization Extream Learning Machines Dimensional Affect Estimation |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Dimensional affect recognition is a challenging topic and current techniques do not yet provide the accuracy necessary for HCI applications. In this work we propose two new methods. The first is a novel self-organizing model that learns from similarity between features and affects. This method produces a graphical representation of the multidimensional data which may assist the expert analysis. The second method uses extreme learning machines, an emerging artificial neural network model. Aiming for minimum intrusiveness, we use only the heart rate variability, which can be recorded using a small set of sensors. The methods were validated with two datasets. The first is composed of 16 sessions with different participants and was used to evaluate the models in a classification task. The second one was the publicly available Remote Collaborative and Affective Interaction (RECOLA) dataset, which was used for dimensional affect estimation. The performance evaluation used the kappa score, unweighted average recall and the concordance correlation coefficient. The concordance coefficient on the RECOLA test partition was 0.421 in arousal and 0.321 in valence. Results shows that our models outperform state-of-the-art models on the same data and provides new ways to analyze affective states. Fil: Bugnon, Leandro Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina Fil: Calvo, Rafael. University of Sydney; Australia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina |
description |
Dimensional affect recognition is a challenging topic and current techniques do not yet provide the accuracy necessary for HCI applications. In this work we propose two new methods. The first is a novel self-organizing model that learns from similarity between features and affects. This method produces a graphical representation of the multidimensional data which may assist the expert analysis. The second method uses extreme learning machines, an emerging artificial neural network model. Aiming for minimum intrusiveness, we use only the heart rate variability, which can be recorded using a small set of sensors. The methods were validated with two datasets. The first is composed of 16 sessions with different participants and was used to evaluate the models in a classification task. The second one was the publicly available Remote Collaborative and Affective Interaction (RECOLA) dataset, which was used for dimensional affect estimation. The performance evaluation used the kappa score, unweighted average recall and the concordance correlation coefficient. The concordance coefficient on the RECOLA test partition was 0.421 in arousal and 0.321 in valence. Results shows that our models outperform state-of-the-art models on the same data and provides new ways to analyze affective states. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/47577 Bugnon, Leandro Ariel; Calvo, Rafael; Milone, Diego Humberto; Dimensional Affect Recognition from HRV: an Approach Based on Supervised SOM and ELM; Institute of Electrical and Electronics Engineers; IEEE Transactions on Affective Computing; 10-2017 1949-3045 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/47577 |
identifier_str_mv |
Bugnon, Leandro Ariel; Calvo, Rafael; Milone, Diego Humberto; Dimensional Affect Recognition from HRV: an Approach Based on Supervised SOM and ELM; Institute of Electrical and Electronics Engineers; IEEE Transactions on Affective Computing; 10-2017 1949-3045 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://ieeexplore.ieee.org/document/8070380/ info:eu-repo/semantics/altIdentifier/doi/10.1109/TAFFC.2017.2763943 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613506831220736 |
score |
13.070432 |