Enhancing edaphoclimatic zoning by adding multivariate spatial statistics to regional data
- Autores
- Giannini Kurina, Franca; Hang, Susana; Córdoba, Mariano; Negro, Gustavo José; Balzarini, Monica Graciela
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Joint spatial variability of soil and climate variables offers the opportunity to delimit contiguous edaphoclimatic zones. These zones can be useful to improve natural resource management. The aim of this work was to develop a statistical protocol for multivariate zoning at regional scales. A zoning of Córdoba, Argentina, was generated using data from a sample of 355 sites involving edaphic and climatic data (pH, TN, TOC, Na, K, CEC, Cu, Clay, Sand, WHC, elevation, annual precipitation and mean temperature). We proposed a two-step algorithm that considers the spatial correlation of these variables in a clustering of sites. The protocol was run after modeling the spatial pattern of each soil variable to adapt information from different sources and formats to a fine grid. In the first step of the protocol, MULTISPATI-PCA, an extension of the principal component analysis that considers the spatial co-variability between variables, was used to obtain linear combinations of original data. In the second step, such synthetic variables (spatial principal components) were used as input of the fuzzy k-mean clustering method to delineate homogeneous zones. The number of clusters was established by internal validation indices. The use of MULlTISPATI-PCA was compared with the more conventional and non-spatial PCA. Results suggest that previous geostatistical interpolation and spatially constrained multivariate analysis create meaningful and spatially coherent zones. Four zones were identified in Córdoba region, Argentina.
Fil: Giannini Kurina, Franca. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; Argentina
Fil: Hang, Susana. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; Argentina
Fil: Córdoba, Mariano. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; Argentina
Fil: Negro, Gustavo José. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; Argentina
Fil: Balzarini, Monica Graciela. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; Argentina - Materia
-
FUZZY K-MEANS
MULTIVARIATE ZONING
SPATIAL PRINCIPAL COMPONENTS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/133198
Ver los metadatos del registro completo
id |
CONICETDig_abd01ac1aa04d924ee14c70a709041d7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/133198 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Enhancing edaphoclimatic zoning by adding multivariate spatial statistics to regional dataGiannini Kurina, FrancaHang, SusanaCórdoba, MarianoNegro, Gustavo JoséBalzarini, Monica GracielaFUZZY K-MEANSMULTIVARIATE ZONINGSPATIAL PRINCIPAL COMPONENTShttps://purl.org/becyt/ford/4.1https://purl.org/becyt/ford/4Joint spatial variability of soil and climate variables offers the opportunity to delimit contiguous edaphoclimatic zones. These zones can be useful to improve natural resource management. The aim of this work was to develop a statistical protocol for multivariate zoning at regional scales. A zoning of Córdoba, Argentina, was generated using data from a sample of 355 sites involving edaphic and climatic data (pH, TN, TOC, Na, K, CEC, Cu, Clay, Sand, WHC, elevation, annual precipitation and mean temperature). We proposed a two-step algorithm that considers the spatial correlation of these variables in a clustering of sites. The protocol was run after modeling the spatial pattern of each soil variable to adapt information from different sources and formats to a fine grid. In the first step of the protocol, MULTISPATI-PCA, an extension of the principal component analysis that considers the spatial co-variability between variables, was used to obtain linear combinations of original data. In the second step, such synthetic variables (spatial principal components) were used as input of the fuzzy k-mean clustering method to delineate homogeneous zones. The number of clusters was established by internal validation indices. The use of MULlTISPATI-PCA was compared with the more conventional and non-spatial PCA. Results suggest that previous geostatistical interpolation and spatially constrained multivariate analysis create meaningful and spatially coherent zones. Four zones were identified in Córdoba region, Argentina.Fil: Giannini Kurina, Franca. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; ArgentinaFil: Hang, Susana. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; ArgentinaFil: Córdoba, Mariano. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; ArgentinaFil: Negro, Gustavo José. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; ArgentinaFil: Balzarini, Monica Graciela. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; ArgentinaElsevier Science2018-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/133198Giannini Kurina, Franca; Hang, Susana; Córdoba, Mariano; Negro, Gustavo José; Balzarini, Monica Graciela; Enhancing edaphoclimatic zoning by adding multivariate spatial statistics to regional data; Elsevier Science; Geoderma; 310; 1-2018; 170-1770016-7061CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S001670611730232Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.geoderma.2017.09.011info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:34:03Zoai:ri.conicet.gov.ar:11336/133198instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:34:03.336CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Enhancing edaphoclimatic zoning by adding multivariate spatial statistics to regional data |
title |
Enhancing edaphoclimatic zoning by adding multivariate spatial statistics to regional data |
spellingShingle |
Enhancing edaphoclimatic zoning by adding multivariate spatial statistics to regional data Giannini Kurina, Franca FUZZY K-MEANS MULTIVARIATE ZONING SPATIAL PRINCIPAL COMPONENTS |
title_short |
Enhancing edaphoclimatic zoning by adding multivariate spatial statistics to regional data |
title_full |
Enhancing edaphoclimatic zoning by adding multivariate spatial statistics to regional data |
title_fullStr |
Enhancing edaphoclimatic zoning by adding multivariate spatial statistics to regional data |
title_full_unstemmed |
Enhancing edaphoclimatic zoning by adding multivariate spatial statistics to regional data |
title_sort |
Enhancing edaphoclimatic zoning by adding multivariate spatial statistics to regional data |
dc.creator.none.fl_str_mv |
Giannini Kurina, Franca Hang, Susana Córdoba, Mariano Negro, Gustavo José Balzarini, Monica Graciela |
author |
Giannini Kurina, Franca |
author_facet |
Giannini Kurina, Franca Hang, Susana Córdoba, Mariano Negro, Gustavo José Balzarini, Monica Graciela |
author_role |
author |
author2 |
Hang, Susana Córdoba, Mariano Negro, Gustavo José Balzarini, Monica Graciela |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
FUZZY K-MEANS MULTIVARIATE ZONING SPATIAL PRINCIPAL COMPONENTS |
topic |
FUZZY K-MEANS MULTIVARIATE ZONING SPATIAL PRINCIPAL COMPONENTS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/4.1 https://purl.org/becyt/ford/4 |
dc.description.none.fl_txt_mv |
Joint spatial variability of soil and climate variables offers the opportunity to delimit contiguous edaphoclimatic zones. These zones can be useful to improve natural resource management. The aim of this work was to develop a statistical protocol for multivariate zoning at regional scales. A zoning of Córdoba, Argentina, was generated using data from a sample of 355 sites involving edaphic and climatic data (pH, TN, TOC, Na, K, CEC, Cu, Clay, Sand, WHC, elevation, annual precipitation and mean temperature). We proposed a two-step algorithm that considers the spatial correlation of these variables in a clustering of sites. The protocol was run after modeling the spatial pattern of each soil variable to adapt information from different sources and formats to a fine grid. In the first step of the protocol, MULTISPATI-PCA, an extension of the principal component analysis that considers the spatial co-variability between variables, was used to obtain linear combinations of original data. In the second step, such synthetic variables (spatial principal components) were used as input of the fuzzy k-mean clustering method to delineate homogeneous zones. The number of clusters was established by internal validation indices. The use of MULlTISPATI-PCA was compared with the more conventional and non-spatial PCA. Results suggest that previous geostatistical interpolation and spatially constrained multivariate analysis create meaningful and spatially coherent zones. Four zones were identified in Córdoba region, Argentina. Fil: Giannini Kurina, Franca. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; Argentina Fil: Hang, Susana. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; Argentina Fil: Córdoba, Mariano. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; Argentina Fil: Negro, Gustavo José. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; Argentina Fil: Balzarini, Monica Graciela. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; Argentina |
description |
Joint spatial variability of soil and climate variables offers the opportunity to delimit contiguous edaphoclimatic zones. These zones can be useful to improve natural resource management. The aim of this work was to develop a statistical protocol for multivariate zoning at regional scales. A zoning of Córdoba, Argentina, was generated using data from a sample of 355 sites involving edaphic and climatic data (pH, TN, TOC, Na, K, CEC, Cu, Clay, Sand, WHC, elevation, annual precipitation and mean temperature). We proposed a two-step algorithm that considers the spatial correlation of these variables in a clustering of sites. The protocol was run after modeling the spatial pattern of each soil variable to adapt information from different sources and formats to a fine grid. In the first step of the protocol, MULTISPATI-PCA, an extension of the principal component analysis that considers the spatial co-variability between variables, was used to obtain linear combinations of original data. In the second step, such synthetic variables (spatial principal components) were used as input of the fuzzy k-mean clustering method to delineate homogeneous zones. The number of clusters was established by internal validation indices. The use of MULlTISPATI-PCA was compared with the more conventional and non-spatial PCA. Results suggest that previous geostatistical interpolation and spatially constrained multivariate analysis create meaningful and spatially coherent zones. Four zones were identified in Córdoba region, Argentina. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/133198 Giannini Kurina, Franca; Hang, Susana; Córdoba, Mariano; Negro, Gustavo José; Balzarini, Monica Graciela; Enhancing edaphoclimatic zoning by adding multivariate spatial statistics to regional data; Elsevier Science; Geoderma; 310; 1-2018; 170-177 0016-7061 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/133198 |
identifier_str_mv |
Giannini Kurina, Franca; Hang, Susana; Córdoba, Mariano; Negro, Gustavo José; Balzarini, Monica Graciela; Enhancing edaphoclimatic zoning by adding multivariate spatial statistics to regional data; Elsevier Science; Geoderma; 310; 1-2018; 170-177 0016-7061 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S001670611730232X info:eu-repo/semantics/altIdentifier/doi/10.1016/j.geoderma.2017.09.011 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613051334000640 |
score |
13.070432 |