An artificial neural network model for prediction of quality characteristics of apples during convective dehydration
- Autores
- Di Scala, Karina Cecilia; Meschino, Gustavo; Vega Gálvez, Antonio; Lemus Mondaca, Roberto; Roura, Sara Ines; Mascheroni, Rodolfo Horacio
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this study, the effects of hot-air drying conditions on color, water holding capacity, and total phenolic content of dried apple were investigated using artificial neural network as an intelligent modeling system. After that, a genetic algorithm was used to optimize the drying conditions. Apples were dried at different temperatures (40, 60, and 80 °C) and at three air flow-rates (0.5, 1, and 1.5 m/s). Applying the leave-one-out cross validation methodology, simulated and experimental data were in good agreement presenting an error < 2.4 %. Quality index optimal values were found at 62.9 °C and 1.0 m/s using genetic algorithm.
Fil: Di Scala, Karina Cecilia. Universidad Nacional de Mar del Plata. Facultad de Ingenieria. Departamento de Ingenieria Quimica. Grupo de Inv En Ingenieria En Alimentos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Meschino, Gustavo. Universidad Nacional de Mar del Plata. Facultad de Ingenieria. Departamento de Ingenieria Electronica. Laboratorio de Bioingenieria; Argentina
Fil: Vega Gálvez, Antonio. Universidad de la Serena; Chile
Fil: Lemus Mondaca, Roberto. Universidad de la Serena; Chile
Fil: Roura, Sara Ines. Universidad Nacional de Mar del Plata. Facultad de Ingenieria. Departamento de Ingenieria Quimica. Grupo de Inv En Ingenieria En Alimentos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Mascheroni, Rodolfo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Centro de Investigaciones en Criotecnología de Alimentos (i); Argentina. Universidad Nacional de La Plata; Argentina - Materia
-
Artificial neural networks
Quality attributes
Genetic algorithm
Process optimization - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/14481
Ver los metadatos del registro completo
id |
CONICETDig_d81c61b2a8e3c83dbe3bb17eb5687e5c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/14481 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
An artificial neural network model for prediction of quality characteristics of apples during convective dehydrationDi Scala, Karina CeciliaMeschino, GustavoVega Gálvez, AntonioLemus Mondaca, RobertoRoura, Sara InesMascheroni, Rodolfo HoracioArtificial neural networksQuality attributesGenetic algorithmProcess optimizationhttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2In this study, the effects of hot-air drying conditions on color, water holding capacity, and total phenolic content of dried apple were investigated using artificial neural network as an intelligent modeling system. After that, a genetic algorithm was used to optimize the drying conditions. Apples were dried at different temperatures (40, 60, and 80 °C) and at three air flow-rates (0.5, 1, and 1.5 m/s). Applying the leave-one-out cross validation methodology, simulated and experimental data were in good agreement presenting an error < 2.4 %. Quality index optimal values were found at 62.9 °C and 1.0 m/s using genetic algorithm.Fil: Di Scala, Karina Cecilia. Universidad Nacional de Mar del Plata. Facultad de Ingenieria. Departamento de Ingenieria Quimica. Grupo de Inv En Ingenieria En Alimentos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Meschino, Gustavo. Universidad Nacional de Mar del Plata. Facultad de Ingenieria. Departamento de Ingenieria Electronica. Laboratorio de Bioingenieria; ArgentinaFil: Vega Gálvez, Antonio. Universidad de la Serena; ChileFil: Lemus Mondaca, Roberto. Universidad de la Serena; ChileFil: Roura, Sara Ines. Universidad Nacional de Mar del Plata. Facultad de Ingenieria. Departamento de Ingenieria Quimica. Grupo de Inv En Ingenieria En Alimentos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Mascheroni, Rodolfo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Centro de Investigaciones en Criotecnología de Alimentos (i); Argentina. Universidad Nacional de La Plata; ArgentinaSoc Brasileira Ciencia Tecnologia Alimentos2013-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/14481Di Scala, Karina Cecilia; Meschino, Gustavo; Vega Gálvez, Antonio; Lemus Mondaca, Roberto; Roura, Sara Ines; et al.; An artificial neural network model for prediction of quality characteristics of apples during convective dehydration; Soc Brasileira Ciencia Tecnologia Alimentos; Ciencia e Tecnologia de Alimentos; 33; 3; 8-2013; 411-4160101-20611678-457Xenginfo:eu-repo/semantics/altIdentifier/doi/10.1590/S0101-20612013005000064info:eu-repo/semantics/altIdentifier/url/http://ref.scielo.org/8v6jfrinfo:eu-repo/semantics/altIdentifier/url/http://www.redalyc.org/articulo.oa?id=395940117004info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:54:35Zoai:ri.conicet.gov.ar:11336/14481instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:54:35.344CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
An artificial neural network model for prediction of quality characteristics of apples during convective dehydration |
title |
An artificial neural network model for prediction of quality characteristics of apples during convective dehydration |
spellingShingle |
An artificial neural network model for prediction of quality characteristics of apples during convective dehydration Di Scala, Karina Cecilia Artificial neural networks Quality attributes Genetic algorithm Process optimization |
title_short |
An artificial neural network model for prediction of quality characteristics of apples during convective dehydration |
title_full |
An artificial neural network model for prediction of quality characteristics of apples during convective dehydration |
title_fullStr |
An artificial neural network model for prediction of quality characteristics of apples during convective dehydration |
title_full_unstemmed |
An artificial neural network model for prediction of quality characteristics of apples during convective dehydration |
title_sort |
An artificial neural network model for prediction of quality characteristics of apples during convective dehydration |
dc.creator.none.fl_str_mv |
Di Scala, Karina Cecilia Meschino, Gustavo Vega Gálvez, Antonio Lemus Mondaca, Roberto Roura, Sara Ines Mascheroni, Rodolfo Horacio |
author |
Di Scala, Karina Cecilia |
author_facet |
Di Scala, Karina Cecilia Meschino, Gustavo Vega Gálvez, Antonio Lemus Mondaca, Roberto Roura, Sara Ines Mascheroni, Rodolfo Horacio |
author_role |
author |
author2 |
Meschino, Gustavo Vega Gálvez, Antonio Lemus Mondaca, Roberto Roura, Sara Ines Mascheroni, Rodolfo Horacio |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Artificial neural networks Quality attributes Genetic algorithm Process optimization |
topic |
Artificial neural networks Quality attributes Genetic algorithm Process optimization |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.11 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
In this study, the effects of hot-air drying conditions on color, water holding capacity, and total phenolic content of dried apple were investigated using artificial neural network as an intelligent modeling system. After that, a genetic algorithm was used to optimize the drying conditions. Apples were dried at different temperatures (40, 60, and 80 °C) and at three air flow-rates (0.5, 1, and 1.5 m/s). Applying the leave-one-out cross validation methodology, simulated and experimental data were in good agreement presenting an error < 2.4 %. Quality index optimal values were found at 62.9 °C and 1.0 m/s using genetic algorithm. Fil: Di Scala, Karina Cecilia. Universidad Nacional de Mar del Plata. Facultad de Ingenieria. Departamento de Ingenieria Quimica. Grupo de Inv En Ingenieria En Alimentos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Meschino, Gustavo. Universidad Nacional de Mar del Plata. Facultad de Ingenieria. Departamento de Ingenieria Electronica. Laboratorio de Bioingenieria; Argentina Fil: Vega Gálvez, Antonio. Universidad de la Serena; Chile Fil: Lemus Mondaca, Roberto. Universidad de la Serena; Chile Fil: Roura, Sara Ines. Universidad Nacional de Mar del Plata. Facultad de Ingenieria. Departamento de Ingenieria Quimica. Grupo de Inv En Ingenieria En Alimentos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Mascheroni, Rodolfo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Centro de Investigaciones en Criotecnología de Alimentos (i); Argentina. Universidad Nacional de La Plata; Argentina |
description |
In this study, the effects of hot-air drying conditions on color, water holding capacity, and total phenolic content of dried apple were investigated using artificial neural network as an intelligent modeling system. After that, a genetic algorithm was used to optimize the drying conditions. Apples were dried at different temperatures (40, 60, and 80 °C) and at three air flow-rates (0.5, 1, and 1.5 m/s). Applying the leave-one-out cross validation methodology, simulated and experimental data were in good agreement presenting an error < 2.4 %. Quality index optimal values were found at 62.9 °C and 1.0 m/s using genetic algorithm. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/14481 Di Scala, Karina Cecilia; Meschino, Gustavo; Vega Gálvez, Antonio; Lemus Mondaca, Roberto; Roura, Sara Ines; et al.; An artificial neural network model for prediction of quality characteristics of apples during convective dehydration; Soc Brasileira Ciencia Tecnologia Alimentos; Ciencia e Tecnologia de Alimentos; 33; 3; 8-2013; 411-416 0101-2061 1678-457X |
url |
http://hdl.handle.net/11336/14481 |
identifier_str_mv |
Di Scala, Karina Cecilia; Meschino, Gustavo; Vega Gálvez, Antonio; Lemus Mondaca, Roberto; Roura, Sara Ines; et al.; An artificial neural network model for prediction of quality characteristics of apples during convective dehydration; Soc Brasileira Ciencia Tecnologia Alimentos; Ciencia e Tecnologia de Alimentos; 33; 3; 8-2013; 411-416 0101-2061 1678-457X |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1590/S0101-20612013005000064 info:eu-repo/semantics/altIdentifier/url/http://ref.scielo.org/8v6jfr info:eu-repo/semantics/altIdentifier/url/http://www.redalyc.org/articulo.oa?id=395940117004 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Soc Brasileira Ciencia Tecnologia Alimentos |
publisher.none.fl_str_mv |
Soc Brasileira Ciencia Tecnologia Alimentos |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613657052315648 |
score |
13.070432 |