Artificial neural network prediction of minimum fluidization velocity for mixtures of biomass and inert solid particles

Autores
Reyes Urrutia, Ramón Andrés; Capossio, Juan Pablo; Venier, César Martín; Torres, Erick David; Rodriguez, Rosa Ana; Mazza, German Delfor
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The fluidization of certain biomasses used in thermal processes, such as sawdust, is particularly difficult due to their irregular shapes, varied sizes, and low densities, causing high minimum fluidization velocities (Umf). The addition of an inert material causes its Umf to drop significantly. The determination of the Umf of the binary mixture is however hard to obtain. Generally, predictive correlations are based on a small number of specific experiments, and sphericity is seldom included. In the present work, three models, i.e., an empirical correlation and two artificial neural networks (ANN) models were used to predict the Umf of biomass-inert mixtures. An extensive bibliographical survey of more than 200 datasets was conducted with complete data about densities, particle diameters, sphericities, biomass fraction, and Umf. With the combined application of the partial dependence plot (PDP) and the ANN models, the average effect of sphericity on Umf was quantitatively determined (inverse relationship) together with the average impact of the biomass fraction on Umf (direct relationship). In comparison with the empirical correlations, the results showed that both ANN models can accurately predict the Umf of the presented binary mixtures with errors lower than 25%.
Fil: Reyes Urrutia, Ramón Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina
Fil: Capossio, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina
Fil: Venier, César Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
Fil: Torres, Erick David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina
Fil: Rodriguez, Rosa Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina
Fil: Mazza, German Delfor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina
Materia
BINARY MIXTURES
FLUIDIZATION
NEURAL NETWORKS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/227349

id CONICETDig_f345841cdc21d4f03ab4a4165113fae7
oai_identifier_str oai:ri.conicet.gov.ar:11336/227349
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Artificial neural network prediction of minimum fluidization velocity for mixtures of biomass and inert solid particlesReyes Urrutia, Ramón AndrésCapossio, Juan PabloVenier, César MartínTorres, Erick DavidRodriguez, Rosa AnaMazza, German DelforBINARY MIXTURESFLUIDIZATIONNEURAL NETWORKShttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2The fluidization of certain biomasses used in thermal processes, such as sawdust, is particularly difficult due to their irregular shapes, varied sizes, and low densities, causing high minimum fluidization velocities (Umf). The addition of an inert material causes its Umf to drop significantly. The determination of the Umf of the binary mixture is however hard to obtain. Generally, predictive correlations are based on a small number of specific experiments, and sphericity is seldom included. In the present work, three models, i.e., an empirical correlation and two artificial neural networks (ANN) models were used to predict the Umf of biomass-inert mixtures. An extensive bibliographical survey of more than 200 datasets was conducted with complete data about densities, particle diameters, sphericities, biomass fraction, and Umf. With the combined application of the partial dependence plot (PDP) and the ANN models, the average effect of sphericity on Umf was quantitatively determined (inverse relationship) together with the average impact of the biomass fraction on Umf (direct relationship). In comparison with the empirical correlations, the results showed that both ANN models can accurately predict the Umf of the presented binary mixtures with errors lower than 25%.Fil: Reyes Urrutia, Ramón Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; ArgentinaFil: Capossio, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; ArgentinaFil: Venier, César Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; ArgentinaFil: Torres, Erick David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; ArgentinaFil: Rodriguez, Rosa Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; ArgentinaFil: Mazza, German Delfor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; ArgentinaMDPI2023-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/227349Reyes Urrutia, Ramón Andrés; Capossio, Juan Pablo; Venier, César Martín; Torres, Erick David; Rodriguez, Rosa Ana; et al.; Artificial neural network prediction of minimum fluidization velocity for mixtures of biomass and inert solid particles; MDPI; Fluids; 8; 4; 5-2023; 1-182311-5521CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3390/fluids8040128info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:26:44Zoai:ri.conicet.gov.ar:11336/227349instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:26:44.448CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Artificial neural network prediction of minimum fluidization velocity for mixtures of biomass and inert solid particles
title Artificial neural network prediction of minimum fluidization velocity for mixtures of biomass and inert solid particles
spellingShingle Artificial neural network prediction of minimum fluidization velocity for mixtures of biomass and inert solid particles
Reyes Urrutia, Ramón Andrés
BINARY MIXTURES
FLUIDIZATION
NEURAL NETWORKS
title_short Artificial neural network prediction of minimum fluidization velocity for mixtures of biomass and inert solid particles
title_full Artificial neural network prediction of minimum fluidization velocity for mixtures of biomass and inert solid particles
title_fullStr Artificial neural network prediction of minimum fluidization velocity for mixtures of biomass and inert solid particles
title_full_unstemmed Artificial neural network prediction of minimum fluidization velocity for mixtures of biomass and inert solid particles
title_sort Artificial neural network prediction of minimum fluidization velocity for mixtures of biomass and inert solid particles
dc.creator.none.fl_str_mv Reyes Urrutia, Ramón Andrés
Capossio, Juan Pablo
Venier, César Martín
Torres, Erick David
Rodriguez, Rosa Ana
Mazza, German Delfor
author Reyes Urrutia, Ramón Andrés
author_facet Reyes Urrutia, Ramón Andrés
Capossio, Juan Pablo
Venier, César Martín
Torres, Erick David
Rodriguez, Rosa Ana
Mazza, German Delfor
author_role author
author2 Capossio, Juan Pablo
Venier, César Martín
Torres, Erick David
Rodriguez, Rosa Ana
Mazza, German Delfor
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv BINARY MIXTURES
FLUIDIZATION
NEURAL NETWORKS
topic BINARY MIXTURES
FLUIDIZATION
NEURAL NETWORKS
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.4
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv The fluidization of certain biomasses used in thermal processes, such as sawdust, is particularly difficult due to their irregular shapes, varied sizes, and low densities, causing high minimum fluidization velocities (Umf). The addition of an inert material causes its Umf to drop significantly. The determination of the Umf of the binary mixture is however hard to obtain. Generally, predictive correlations are based on a small number of specific experiments, and sphericity is seldom included. In the present work, three models, i.e., an empirical correlation and two artificial neural networks (ANN) models were used to predict the Umf of biomass-inert mixtures. An extensive bibliographical survey of more than 200 datasets was conducted with complete data about densities, particle diameters, sphericities, biomass fraction, and Umf. With the combined application of the partial dependence plot (PDP) and the ANN models, the average effect of sphericity on Umf was quantitatively determined (inverse relationship) together with the average impact of the biomass fraction on Umf (direct relationship). In comparison with the empirical correlations, the results showed that both ANN models can accurately predict the Umf of the presented binary mixtures with errors lower than 25%.
Fil: Reyes Urrutia, Ramón Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina
Fil: Capossio, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina
Fil: Venier, César Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
Fil: Torres, Erick David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina
Fil: Rodriguez, Rosa Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina
Fil: Mazza, German Delfor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina
description The fluidization of certain biomasses used in thermal processes, such as sawdust, is particularly difficult due to their irregular shapes, varied sizes, and low densities, causing high minimum fluidization velocities (Umf). The addition of an inert material causes its Umf to drop significantly. The determination of the Umf of the binary mixture is however hard to obtain. Generally, predictive correlations are based on a small number of specific experiments, and sphericity is seldom included. In the present work, three models, i.e., an empirical correlation and two artificial neural networks (ANN) models were used to predict the Umf of biomass-inert mixtures. An extensive bibliographical survey of more than 200 datasets was conducted with complete data about densities, particle diameters, sphericities, biomass fraction, and Umf. With the combined application of the partial dependence plot (PDP) and the ANN models, the average effect of sphericity on Umf was quantitatively determined (inverse relationship) together with the average impact of the biomass fraction on Umf (direct relationship). In comparison with the empirical correlations, the results showed that both ANN models can accurately predict the Umf of the presented binary mixtures with errors lower than 25%.
publishDate 2023
dc.date.none.fl_str_mv 2023-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/227349
Reyes Urrutia, Ramón Andrés; Capossio, Juan Pablo; Venier, César Martín; Torres, Erick David; Rodriguez, Rosa Ana; et al.; Artificial neural network prediction of minimum fluidization velocity for mixtures of biomass and inert solid particles; MDPI; Fluids; 8; 4; 5-2023; 1-18
2311-5521
CONICET Digital
CONICET
url http://hdl.handle.net/11336/227349
identifier_str_mv Reyes Urrutia, Ramón Andrés; Capossio, Juan Pablo; Venier, César Martín; Torres, Erick David; Rodriguez, Rosa Ana; et al.; Artificial neural network prediction of minimum fluidization velocity for mixtures of biomass and inert solid particles; MDPI; Fluids; 8; 4; 5-2023; 1-18
2311-5521
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.3390/fluids8040128
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082715534753792
score 13.22299