Artificial neural network prediction of minimum fluidization velocity for mixtures of biomass and inert solid particles
- Autores
- Reyes Urrutia, Ramón Andrés; Capossio, Juan Pablo; Venier, César Martín; Torres, Erick David; Rodriguez, Rosa Ana; Mazza, German Delfor
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The fluidization of certain biomasses used in thermal processes, such as sawdust, is particularly difficult due to their irregular shapes, varied sizes, and low densities, causing high minimum fluidization velocities (Umf). The addition of an inert material causes its Umf to drop significantly. The determination of the Umf of the binary mixture is however hard to obtain. Generally, predictive correlations are based on a small number of specific experiments, and sphericity is seldom included. In the present work, three models, i.e., an empirical correlation and two artificial neural networks (ANN) models were used to predict the Umf of biomass-inert mixtures. An extensive bibliographical survey of more than 200 datasets was conducted with complete data about densities, particle diameters, sphericities, biomass fraction, and Umf. With the combined application of the partial dependence plot (PDP) and the ANN models, the average effect of sphericity on Umf was quantitatively determined (inverse relationship) together with the average impact of the biomass fraction on Umf (direct relationship). In comparison with the empirical correlations, the results showed that both ANN models can accurately predict the Umf of the presented binary mixtures with errors lower than 25%.
Fil: Reyes Urrutia, Ramón Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina
Fil: Capossio, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina
Fil: Venier, César Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
Fil: Torres, Erick David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina
Fil: Rodriguez, Rosa Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina
Fil: Mazza, German Delfor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina - Materia
-
BINARY MIXTURES
FLUIDIZATION
NEURAL NETWORKS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/227349
Ver los metadatos del registro completo
id |
CONICETDig_f345841cdc21d4f03ab4a4165113fae7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/227349 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Artificial neural network prediction of minimum fluidization velocity for mixtures of biomass and inert solid particlesReyes Urrutia, Ramón AndrésCapossio, Juan PabloVenier, César MartínTorres, Erick DavidRodriguez, Rosa AnaMazza, German DelforBINARY MIXTURESFLUIDIZATIONNEURAL NETWORKShttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2The fluidization of certain biomasses used in thermal processes, such as sawdust, is particularly difficult due to their irregular shapes, varied sizes, and low densities, causing high minimum fluidization velocities (Umf). The addition of an inert material causes its Umf to drop significantly. The determination of the Umf of the binary mixture is however hard to obtain. Generally, predictive correlations are based on a small number of specific experiments, and sphericity is seldom included. In the present work, three models, i.e., an empirical correlation and two artificial neural networks (ANN) models were used to predict the Umf of biomass-inert mixtures. An extensive bibliographical survey of more than 200 datasets was conducted with complete data about densities, particle diameters, sphericities, biomass fraction, and Umf. With the combined application of the partial dependence plot (PDP) and the ANN models, the average effect of sphericity on Umf was quantitatively determined (inverse relationship) together with the average impact of the biomass fraction on Umf (direct relationship). In comparison with the empirical correlations, the results showed that both ANN models can accurately predict the Umf of the presented binary mixtures with errors lower than 25%.Fil: Reyes Urrutia, Ramón Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; ArgentinaFil: Capossio, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; ArgentinaFil: Venier, César Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; ArgentinaFil: Torres, Erick David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; ArgentinaFil: Rodriguez, Rosa Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; ArgentinaFil: Mazza, German Delfor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; ArgentinaMDPI2023-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/227349Reyes Urrutia, Ramón Andrés; Capossio, Juan Pablo; Venier, César Martín; Torres, Erick David; Rodriguez, Rosa Ana; et al.; Artificial neural network prediction of minimum fluidization velocity for mixtures of biomass and inert solid particles; MDPI; Fluids; 8; 4; 5-2023; 1-182311-5521CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3390/fluids8040128info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:26:44Zoai:ri.conicet.gov.ar:11336/227349instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:26:44.448CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Artificial neural network prediction of minimum fluidization velocity for mixtures of biomass and inert solid particles |
title |
Artificial neural network prediction of minimum fluidization velocity for mixtures of biomass and inert solid particles |
spellingShingle |
Artificial neural network prediction of minimum fluidization velocity for mixtures of biomass and inert solid particles Reyes Urrutia, Ramón Andrés BINARY MIXTURES FLUIDIZATION NEURAL NETWORKS |
title_short |
Artificial neural network prediction of minimum fluidization velocity for mixtures of biomass and inert solid particles |
title_full |
Artificial neural network prediction of minimum fluidization velocity for mixtures of biomass and inert solid particles |
title_fullStr |
Artificial neural network prediction of minimum fluidization velocity for mixtures of biomass and inert solid particles |
title_full_unstemmed |
Artificial neural network prediction of minimum fluidization velocity for mixtures of biomass and inert solid particles |
title_sort |
Artificial neural network prediction of minimum fluidization velocity for mixtures of biomass and inert solid particles |
dc.creator.none.fl_str_mv |
Reyes Urrutia, Ramón Andrés Capossio, Juan Pablo Venier, César Martín Torres, Erick David Rodriguez, Rosa Ana Mazza, German Delfor |
author |
Reyes Urrutia, Ramón Andrés |
author_facet |
Reyes Urrutia, Ramón Andrés Capossio, Juan Pablo Venier, César Martín Torres, Erick David Rodriguez, Rosa Ana Mazza, German Delfor |
author_role |
author |
author2 |
Capossio, Juan Pablo Venier, César Martín Torres, Erick David Rodriguez, Rosa Ana Mazza, German Delfor |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
BINARY MIXTURES FLUIDIZATION NEURAL NETWORKS |
topic |
BINARY MIXTURES FLUIDIZATION NEURAL NETWORKS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The fluidization of certain biomasses used in thermal processes, such as sawdust, is particularly difficult due to their irregular shapes, varied sizes, and low densities, causing high minimum fluidization velocities (Umf). The addition of an inert material causes its Umf to drop significantly. The determination of the Umf of the binary mixture is however hard to obtain. Generally, predictive correlations are based on a small number of specific experiments, and sphericity is seldom included. In the present work, three models, i.e., an empirical correlation and two artificial neural networks (ANN) models were used to predict the Umf of biomass-inert mixtures. An extensive bibliographical survey of more than 200 datasets was conducted with complete data about densities, particle diameters, sphericities, biomass fraction, and Umf. With the combined application of the partial dependence plot (PDP) and the ANN models, the average effect of sphericity on Umf was quantitatively determined (inverse relationship) together with the average impact of the biomass fraction on Umf (direct relationship). In comparison with the empirical correlations, the results showed that both ANN models can accurately predict the Umf of the presented binary mixtures with errors lower than 25%. Fil: Reyes Urrutia, Ramón Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina Fil: Capossio, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina Fil: Venier, César Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina Fil: Torres, Erick David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina Fil: Rodriguez, Rosa Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina Fil: Mazza, German Delfor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina |
description |
The fluidization of certain biomasses used in thermal processes, such as sawdust, is particularly difficult due to their irregular shapes, varied sizes, and low densities, causing high minimum fluidization velocities (Umf). The addition of an inert material causes its Umf to drop significantly. The determination of the Umf of the binary mixture is however hard to obtain. Generally, predictive correlations are based on a small number of specific experiments, and sphericity is seldom included. In the present work, three models, i.e., an empirical correlation and two artificial neural networks (ANN) models were used to predict the Umf of biomass-inert mixtures. An extensive bibliographical survey of more than 200 datasets was conducted with complete data about densities, particle diameters, sphericities, biomass fraction, and Umf. With the combined application of the partial dependence plot (PDP) and the ANN models, the average effect of sphericity on Umf was quantitatively determined (inverse relationship) together with the average impact of the biomass fraction on Umf (direct relationship). In comparison with the empirical correlations, the results showed that both ANN models can accurately predict the Umf of the presented binary mixtures with errors lower than 25%. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/227349 Reyes Urrutia, Ramón Andrés; Capossio, Juan Pablo; Venier, César Martín; Torres, Erick David; Rodriguez, Rosa Ana; et al.; Artificial neural network prediction of minimum fluidization velocity for mixtures of biomass and inert solid particles; MDPI; Fluids; 8; 4; 5-2023; 1-18 2311-5521 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/227349 |
identifier_str_mv |
Reyes Urrutia, Ramón Andrés; Capossio, Juan Pablo; Venier, César Martín; Torres, Erick David; Rodriguez, Rosa Ana; et al.; Artificial neural network prediction of minimum fluidization velocity for mixtures of biomass and inert solid particles; MDPI; Fluids; 8; 4; 5-2023; 1-18 2311-5521 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.3390/fluids8040128 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082715534753792 |
score |
13.22299 |