Effect of Printing Orientation on the Mechanical Properties of Low-Force Stereolithography-Manufactured Durable Resin
- Autores
- Martínez Raya, Antonio; Aranda Ruiz, Josué; Sal Anglada, Gastón; Jaureguizahar, Sebastian Martin; Braun, Matias Nicolas
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This study presents the results of fracture toughness tests conducted on specimens obtained by additive manufacturing techniques, specifically using low-force stereolithography. The samples were manufactured from a transparent 3D printing material for biocompatible applications, the so-called BioMed Durable Resin, which is a Formlabs-patented polymer material that simulates the strength and rigidity of polyethylene. The selected toughness tests in this context were performed following the ASTM D5045-99 guidelines. All tests were conducted under controlled laboratory conditions at 23 °C and 50% relative humidity, ensuring adherence to the standard and the replicability of the experimental results. To investigate the influence of printing plane orientation, specimens were produced at three printing orientation angles (0, 45, and 90 degrees). These angles were selected to provide a comprehensive evaluation of the anisotropy effects in the material. They cover both extreme orientations (0° and 90°) and include an intermediate value (45°), allowing us to assess variations in mechanical behavior across a representative range of printing orientations, consistent with prior research in the field. The experimental tests yielded data on the crack resistance and energy release rate for each angle of orientation. There are various implications of the findings, beyond materials engineering, for applications in biomedicine. Indeed, this same approach opens the door to new research methods for manufacturing certified biocompatible materials from such durable resins. Finally, complementary issues such as related medical applications have been slightly addressed for future work, since biomedicine innovation clusters can contribute to accelerating growth in this crucial field for productive sector activity and the local business environment.
Fil: Martínez Raya, Antonio. Universidad Politécnica de Madrid; España
Fil: Aranda Ruiz, Josué. Universidad Carlos III de Madrid. Instituto de Salud; España
Fil: Sal Anglada, Gastón. Universidad Politécnica de Catalunya; España
Fil: Jaureguizahar, Sebastian Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Braun, Matias Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina. Universidad Politécnica de Catalunya; España - Materia
-
Additive manufacturing techniques
Low-force stereolithography
Biocompatible applications
Materials engineering - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/266566
Ver los metadatos del registro completo
id |
CONICETDig_d72959414a7ef591cde1366a740e4a20 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/266566 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Effect of Printing Orientation on the Mechanical Properties of Low-Force Stereolithography-Manufactured Durable ResinMartínez Raya, AntonioAranda Ruiz, JosuéSal Anglada, GastónJaureguizahar, Sebastian MartinBraun, Matias NicolasAdditive manufacturing techniquesLow-force stereolithographyBiocompatible applicationsMaterials engineeringhttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2This study presents the results of fracture toughness tests conducted on specimens obtained by additive manufacturing techniques, specifically using low-force stereolithography. The samples were manufactured from a transparent 3D printing material for biocompatible applications, the so-called BioMed Durable Resin, which is a Formlabs-patented polymer material that simulates the strength and rigidity of polyethylene. The selected toughness tests in this context were performed following the ASTM D5045-99 guidelines. All tests were conducted under controlled laboratory conditions at 23 °C and 50% relative humidity, ensuring adherence to the standard and the replicability of the experimental results. To investigate the influence of printing plane orientation, specimens were produced at three printing orientation angles (0, 45, and 90 degrees). These angles were selected to provide a comprehensive evaluation of the anisotropy effects in the material. They cover both extreme orientations (0° and 90°) and include an intermediate value (45°), allowing us to assess variations in mechanical behavior across a representative range of printing orientations, consistent with prior research in the field. The experimental tests yielded data on the crack resistance and energy release rate for each angle of orientation. There are various implications of the findings, beyond materials engineering, for applications in biomedicine. Indeed, this same approach opens the door to new research methods for manufacturing certified biocompatible materials from such durable resins. Finally, complementary issues such as related medical applications have been slightly addressed for future work, since biomedicine innovation clusters can contribute to accelerating growth in this crucial field for productive sector activity and the local business environment.Fil: Martínez Raya, Antonio. Universidad Politécnica de Madrid; EspañaFil: Aranda Ruiz, Josué. Universidad Carlos III de Madrid. Instituto de Salud; EspañaFil: Sal Anglada, Gastón. Universidad Politécnica de Catalunya; EspañaFil: Jaureguizahar, Sebastian Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Braun, Matias Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina. Universidad Politécnica de Catalunya; EspañaMultidisciplinary Digital Publishing Institute2024-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/266566Martínez Raya, Antonio; Aranda Ruiz, Josué; Sal Anglada, Gastón; Jaureguizahar, Sebastian Martin; Braun, Matias Nicolas; Effect of Printing Orientation on the Mechanical Properties of Low-Force Stereolithography-Manufactured Durable Resin; Multidisciplinary Digital Publishing Institute; Applied Sciences; 14; 20; 10-2024; 1-122076-3417CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2076-3417/14/20/9529info:eu-repo/semantics/altIdentifier/doi/10.3390/app14209529info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:08:19Zoai:ri.conicet.gov.ar:11336/266566instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:08:19.326CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Effect of Printing Orientation on the Mechanical Properties of Low-Force Stereolithography-Manufactured Durable Resin |
title |
Effect of Printing Orientation on the Mechanical Properties of Low-Force Stereolithography-Manufactured Durable Resin |
spellingShingle |
Effect of Printing Orientation on the Mechanical Properties of Low-Force Stereolithography-Manufactured Durable Resin Martínez Raya, Antonio Additive manufacturing techniques Low-force stereolithography Biocompatible applications Materials engineering |
title_short |
Effect of Printing Orientation on the Mechanical Properties of Low-Force Stereolithography-Manufactured Durable Resin |
title_full |
Effect of Printing Orientation on the Mechanical Properties of Low-Force Stereolithography-Manufactured Durable Resin |
title_fullStr |
Effect of Printing Orientation on the Mechanical Properties of Low-Force Stereolithography-Manufactured Durable Resin |
title_full_unstemmed |
Effect of Printing Orientation on the Mechanical Properties of Low-Force Stereolithography-Manufactured Durable Resin |
title_sort |
Effect of Printing Orientation on the Mechanical Properties of Low-Force Stereolithography-Manufactured Durable Resin |
dc.creator.none.fl_str_mv |
Martínez Raya, Antonio Aranda Ruiz, Josué Sal Anglada, Gastón Jaureguizahar, Sebastian Martin Braun, Matias Nicolas |
author |
Martínez Raya, Antonio |
author_facet |
Martínez Raya, Antonio Aranda Ruiz, Josué Sal Anglada, Gastón Jaureguizahar, Sebastian Martin Braun, Matias Nicolas |
author_role |
author |
author2 |
Aranda Ruiz, Josué Sal Anglada, Gastón Jaureguizahar, Sebastian Martin Braun, Matias Nicolas |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Additive manufacturing techniques Low-force stereolithography Biocompatible applications Materials engineering |
topic |
Additive manufacturing techniques Low-force stereolithography Biocompatible applications Materials engineering |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.3 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
This study presents the results of fracture toughness tests conducted on specimens obtained by additive manufacturing techniques, specifically using low-force stereolithography. The samples were manufactured from a transparent 3D printing material for biocompatible applications, the so-called BioMed Durable Resin, which is a Formlabs-patented polymer material that simulates the strength and rigidity of polyethylene. The selected toughness tests in this context were performed following the ASTM D5045-99 guidelines. All tests were conducted under controlled laboratory conditions at 23 °C and 50% relative humidity, ensuring adherence to the standard and the replicability of the experimental results. To investigate the influence of printing plane orientation, specimens were produced at three printing orientation angles (0, 45, and 90 degrees). These angles were selected to provide a comprehensive evaluation of the anisotropy effects in the material. They cover both extreme orientations (0° and 90°) and include an intermediate value (45°), allowing us to assess variations in mechanical behavior across a representative range of printing orientations, consistent with prior research in the field. The experimental tests yielded data on the crack resistance and energy release rate for each angle of orientation. There are various implications of the findings, beyond materials engineering, for applications in biomedicine. Indeed, this same approach opens the door to new research methods for manufacturing certified biocompatible materials from such durable resins. Finally, complementary issues such as related medical applications have been slightly addressed for future work, since biomedicine innovation clusters can contribute to accelerating growth in this crucial field for productive sector activity and the local business environment. Fil: Martínez Raya, Antonio. Universidad Politécnica de Madrid; España Fil: Aranda Ruiz, Josué. Universidad Carlos III de Madrid. Instituto de Salud; España Fil: Sal Anglada, Gastón. Universidad Politécnica de Catalunya; España Fil: Jaureguizahar, Sebastian Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina Fil: Braun, Matias Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina. Universidad Politécnica de Catalunya; España |
description |
This study presents the results of fracture toughness tests conducted on specimens obtained by additive manufacturing techniques, specifically using low-force stereolithography. The samples were manufactured from a transparent 3D printing material for biocompatible applications, the so-called BioMed Durable Resin, which is a Formlabs-patented polymer material that simulates the strength and rigidity of polyethylene. The selected toughness tests in this context were performed following the ASTM D5045-99 guidelines. All tests were conducted under controlled laboratory conditions at 23 °C and 50% relative humidity, ensuring adherence to the standard and the replicability of the experimental results. To investigate the influence of printing plane orientation, specimens were produced at three printing orientation angles (0, 45, and 90 degrees). These angles were selected to provide a comprehensive evaluation of the anisotropy effects in the material. They cover both extreme orientations (0° and 90°) and include an intermediate value (45°), allowing us to assess variations in mechanical behavior across a representative range of printing orientations, consistent with prior research in the field. The experimental tests yielded data on the crack resistance and energy release rate for each angle of orientation. There are various implications of the findings, beyond materials engineering, for applications in biomedicine. Indeed, this same approach opens the door to new research methods for manufacturing certified biocompatible materials from such durable resins. Finally, complementary issues such as related medical applications have been slightly addressed for future work, since biomedicine innovation clusters can contribute to accelerating growth in this crucial field for productive sector activity and the local business environment. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/266566 Martínez Raya, Antonio; Aranda Ruiz, Josué; Sal Anglada, Gastón; Jaureguizahar, Sebastian Martin; Braun, Matias Nicolas; Effect of Printing Orientation on the Mechanical Properties of Low-Force Stereolithography-Manufactured Durable Resin; Multidisciplinary Digital Publishing Institute; Applied Sciences; 14; 20; 10-2024; 1-12 2076-3417 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/266566 |
identifier_str_mv |
Martínez Raya, Antonio; Aranda Ruiz, Josué; Sal Anglada, Gastón; Jaureguizahar, Sebastian Martin; Braun, Matias Nicolas; Effect of Printing Orientation on the Mechanical Properties of Low-Force Stereolithography-Manufactured Durable Resin; Multidisciplinary Digital Publishing Institute; Applied Sciences; 14; 20; 10-2024; 1-12 2076-3417 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2076-3417/14/20/9529 info:eu-repo/semantics/altIdentifier/doi/10.3390/app14209529 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613950536155136 |
score |
13.070432 |