Effect of Printing Orientation on the Mechanical Properties of Low-Force Stereolithography-Manufactured Durable Resin

Autores
Martínez Raya, Antonio; Aranda Ruiz, Josué; Sal Anglada, Gastón; Jaureguizahar, Sebastian Martin; Braun, Matias Nicolas
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This study presents the results of fracture toughness tests conducted on specimens obtained by additive manufacturing techniques, specifically using low-force stereolithography. The samples were manufactured from a transparent 3D printing material for biocompatible applications, the so-called BioMed Durable Resin, which is a Formlabs-patented polymer material that simulates the strength and rigidity of polyethylene. The selected toughness tests in this context were performed following the ASTM D5045-99 guidelines. All tests were conducted under controlled laboratory conditions at 23 °C and 50% relative humidity, ensuring adherence to the standard and the replicability of the experimental results. To investigate the influence of printing plane orientation, specimens were produced at three printing orientation angles (0, 45, and 90 degrees). These angles were selected to provide a comprehensive evaluation of the anisotropy effects in the material. They cover both extreme orientations (0° and 90°) and include an intermediate value (45°), allowing us to assess variations in mechanical behavior across a representative range of printing orientations, consistent with prior research in the field. The experimental tests yielded data on the crack resistance and energy release rate for each angle of orientation. There are various implications of the findings, beyond materials engineering, for applications in biomedicine. Indeed, this same approach opens the door to new research methods for manufacturing certified biocompatible materials from such durable resins. Finally, complementary issues such as related medical applications have been slightly addressed for future work, since biomedicine innovation clusters can contribute to accelerating growth in this crucial field for productive sector activity and the local business environment.
Fil: Martínez Raya, Antonio. Universidad Politécnica de Madrid; España
Fil: Aranda Ruiz, Josué. Universidad Carlos III de Madrid. Instituto de Salud; España
Fil: Sal Anglada, Gastón. Universidad Politécnica de Catalunya; España
Fil: Jaureguizahar, Sebastian Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Braun, Matias Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina. Universidad Politécnica de Catalunya; España
Materia
Additive manufacturing techniques
Low-force stereolithography
Biocompatible applications
Materials engineering
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/266566

id CONICETDig_d72959414a7ef591cde1366a740e4a20
oai_identifier_str oai:ri.conicet.gov.ar:11336/266566
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Effect of Printing Orientation on the Mechanical Properties of Low-Force Stereolithography-Manufactured Durable ResinMartínez Raya, AntonioAranda Ruiz, JosuéSal Anglada, GastónJaureguizahar, Sebastian MartinBraun, Matias NicolasAdditive manufacturing techniquesLow-force stereolithographyBiocompatible applicationsMaterials engineeringhttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2This study presents the results of fracture toughness tests conducted on specimens obtained by additive manufacturing techniques, specifically using low-force stereolithography. The samples were manufactured from a transparent 3D printing material for biocompatible applications, the so-called BioMed Durable Resin, which is a Formlabs-patented polymer material that simulates the strength and rigidity of polyethylene. The selected toughness tests in this context were performed following the ASTM D5045-99 guidelines. All tests were conducted under controlled laboratory conditions at 23 °C and 50% relative humidity, ensuring adherence to the standard and the replicability of the experimental results. To investigate the influence of printing plane orientation, specimens were produced at three printing orientation angles (0, 45, and 90 degrees). These angles were selected to provide a comprehensive evaluation of the anisotropy effects in the material. They cover both extreme orientations (0° and 90°) and include an intermediate value (45°), allowing us to assess variations in mechanical behavior across a representative range of printing orientations, consistent with prior research in the field. The experimental tests yielded data on the crack resistance and energy release rate for each angle of orientation. There are various implications of the findings, beyond materials engineering, for applications in biomedicine. Indeed, this same approach opens the door to new research methods for manufacturing certified biocompatible materials from such durable resins. Finally, complementary issues such as related medical applications have been slightly addressed for future work, since biomedicine innovation clusters can contribute to accelerating growth in this crucial field for productive sector activity and the local business environment.Fil: Martínez Raya, Antonio. Universidad Politécnica de Madrid; EspañaFil: Aranda Ruiz, Josué. Universidad Carlos III de Madrid. Instituto de Salud; EspañaFil: Sal Anglada, Gastón. Universidad Politécnica de Catalunya; EspañaFil: Jaureguizahar, Sebastian Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Braun, Matias Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina. Universidad Politécnica de Catalunya; EspañaMultidisciplinary Digital Publishing Institute2024-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/266566Martínez Raya, Antonio; Aranda Ruiz, Josué; Sal Anglada, Gastón; Jaureguizahar, Sebastian Martin; Braun, Matias Nicolas; Effect of Printing Orientation on the Mechanical Properties of Low-Force Stereolithography-Manufactured Durable Resin; Multidisciplinary Digital Publishing Institute; Applied Sciences; 14; 20; 10-2024; 1-122076-3417CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2076-3417/14/20/9529info:eu-repo/semantics/altIdentifier/doi/10.3390/app14209529info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:08:19Zoai:ri.conicet.gov.ar:11336/266566instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:08:19.326CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Effect of Printing Orientation on the Mechanical Properties of Low-Force Stereolithography-Manufactured Durable Resin
title Effect of Printing Orientation on the Mechanical Properties of Low-Force Stereolithography-Manufactured Durable Resin
spellingShingle Effect of Printing Orientation on the Mechanical Properties of Low-Force Stereolithography-Manufactured Durable Resin
Martínez Raya, Antonio
Additive manufacturing techniques
Low-force stereolithography
Biocompatible applications
Materials engineering
title_short Effect of Printing Orientation on the Mechanical Properties of Low-Force Stereolithography-Manufactured Durable Resin
title_full Effect of Printing Orientation on the Mechanical Properties of Low-Force Stereolithography-Manufactured Durable Resin
title_fullStr Effect of Printing Orientation on the Mechanical Properties of Low-Force Stereolithography-Manufactured Durable Resin
title_full_unstemmed Effect of Printing Orientation on the Mechanical Properties of Low-Force Stereolithography-Manufactured Durable Resin
title_sort Effect of Printing Orientation on the Mechanical Properties of Low-Force Stereolithography-Manufactured Durable Resin
dc.creator.none.fl_str_mv Martínez Raya, Antonio
Aranda Ruiz, Josué
Sal Anglada, Gastón
Jaureguizahar, Sebastian Martin
Braun, Matias Nicolas
author Martínez Raya, Antonio
author_facet Martínez Raya, Antonio
Aranda Ruiz, Josué
Sal Anglada, Gastón
Jaureguizahar, Sebastian Martin
Braun, Matias Nicolas
author_role author
author2 Aranda Ruiz, Josué
Sal Anglada, Gastón
Jaureguizahar, Sebastian Martin
Braun, Matias Nicolas
author2_role author
author
author
author
dc.subject.none.fl_str_mv Additive manufacturing techniques
Low-force stereolithography
Biocompatible applications
Materials engineering
topic Additive manufacturing techniques
Low-force stereolithography
Biocompatible applications
Materials engineering
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.3
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv This study presents the results of fracture toughness tests conducted on specimens obtained by additive manufacturing techniques, specifically using low-force stereolithography. The samples were manufactured from a transparent 3D printing material for biocompatible applications, the so-called BioMed Durable Resin, which is a Formlabs-patented polymer material that simulates the strength and rigidity of polyethylene. The selected toughness tests in this context were performed following the ASTM D5045-99 guidelines. All tests were conducted under controlled laboratory conditions at 23 °C and 50% relative humidity, ensuring adherence to the standard and the replicability of the experimental results. To investigate the influence of printing plane orientation, specimens were produced at three printing orientation angles (0, 45, and 90 degrees). These angles were selected to provide a comprehensive evaluation of the anisotropy effects in the material. They cover both extreme orientations (0° and 90°) and include an intermediate value (45°), allowing us to assess variations in mechanical behavior across a representative range of printing orientations, consistent with prior research in the field. The experimental tests yielded data on the crack resistance and energy release rate for each angle of orientation. There are various implications of the findings, beyond materials engineering, for applications in biomedicine. Indeed, this same approach opens the door to new research methods for manufacturing certified biocompatible materials from such durable resins. Finally, complementary issues such as related medical applications have been slightly addressed for future work, since biomedicine innovation clusters can contribute to accelerating growth in this crucial field for productive sector activity and the local business environment.
Fil: Martínez Raya, Antonio. Universidad Politécnica de Madrid; España
Fil: Aranda Ruiz, Josué. Universidad Carlos III de Madrid. Instituto de Salud; España
Fil: Sal Anglada, Gastón. Universidad Politécnica de Catalunya; España
Fil: Jaureguizahar, Sebastian Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Braun, Matias Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina. Universidad Politécnica de Catalunya; España
description This study presents the results of fracture toughness tests conducted on specimens obtained by additive manufacturing techniques, specifically using low-force stereolithography. The samples were manufactured from a transparent 3D printing material for biocompatible applications, the so-called BioMed Durable Resin, which is a Formlabs-patented polymer material that simulates the strength and rigidity of polyethylene. The selected toughness tests in this context were performed following the ASTM D5045-99 guidelines. All tests were conducted under controlled laboratory conditions at 23 °C and 50% relative humidity, ensuring adherence to the standard and the replicability of the experimental results. To investigate the influence of printing plane orientation, specimens were produced at three printing orientation angles (0, 45, and 90 degrees). These angles were selected to provide a comprehensive evaluation of the anisotropy effects in the material. They cover both extreme orientations (0° and 90°) and include an intermediate value (45°), allowing us to assess variations in mechanical behavior across a representative range of printing orientations, consistent with prior research in the field. The experimental tests yielded data on the crack resistance and energy release rate for each angle of orientation. There are various implications of the findings, beyond materials engineering, for applications in biomedicine. Indeed, this same approach opens the door to new research methods for manufacturing certified biocompatible materials from such durable resins. Finally, complementary issues such as related medical applications have been slightly addressed for future work, since biomedicine innovation clusters can contribute to accelerating growth in this crucial field for productive sector activity and the local business environment.
publishDate 2024
dc.date.none.fl_str_mv 2024-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/266566
Martínez Raya, Antonio; Aranda Ruiz, Josué; Sal Anglada, Gastón; Jaureguizahar, Sebastian Martin; Braun, Matias Nicolas; Effect of Printing Orientation on the Mechanical Properties of Low-Force Stereolithography-Manufactured Durable Resin; Multidisciplinary Digital Publishing Institute; Applied Sciences; 14; 20; 10-2024; 1-12
2076-3417
CONICET Digital
CONICET
url http://hdl.handle.net/11336/266566
identifier_str_mv Martínez Raya, Antonio; Aranda Ruiz, Josué; Sal Anglada, Gastón; Jaureguizahar, Sebastian Martin; Braun, Matias Nicolas; Effect of Printing Orientation on the Mechanical Properties of Low-Force Stereolithography-Manufactured Durable Resin; Multidisciplinary Digital Publishing Institute; Applied Sciences; 14; 20; 10-2024; 1-12
2076-3417
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2076-3417/14/20/9529
info:eu-repo/semantics/altIdentifier/doi/10.3390/app14209529
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute
publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613950536155136
score 13.070432