Bragg edge tomography characterization of additively manufactured 316L steel

Autores
Busi, Matteo; Polatidis, Efthymios; Malamud, Florencia; Kockelmann, Winfried; Morgano, Manuel; Kaestner, Anders; Tremsin, Anton; Kalentics, Nikola; Logé, Roland; Leinenbach, Christian; Shinohara, Takenao; Strobl, Markus
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this work we perform a neutron Bragg edge tomography of stainless steel 316L additive manufacturing samples, one as built via standard laser powder bed fusion, and one using the novel three-dimensional (3D) laser shock peening technique. First, we consider conventional attenuation tomography of the two samples by integrating the signal for neutron wavelengths beyond the last Bragg edge, to analyze the bulk density properties of the material. This is used to map defects, such as porosities or cracks, which yield a lower density. Second, we obtain strain maps for each of the tomography projections by tracking the wavelength of the strongest Bragg edge corresponding to the {111} lattice plane family. Algebraic reconstruction techniques are used to obtain volumetric 3D maps of the strain in the bulk of the samples. It is found that not only the volume of the sample where the shock peening treatment was carried out yields a higher bulk density, but also a deep and remarkable compressive strain region. Finally, the analysis of the Bragg edge heights as a function of the projection angle is used to describe qualitatively crystallographic texture properties of the samples.
Fil: Busi, Matteo. Laboratory for Neutron Scattering and Imaging; Suiza
Fil: Polatidis, Efthymios. Laboratory for Neutron Scattering and Imaging; Suiza
Fil: Malamud, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Kockelmann, Winfried. No especifíca;
Fil: Morgano, Manuel. No especifíca;
Fil: Kaestner, Anders. Laboratory for Neutron Scattering and Imaging; Suiza
Fil: Tremsin, Anton. University of California at Berkeley; Estados Unidos
Fil: Kalentics, Nikola. Ecole Polytechnique Fédérale de Lausanne; Suiza
Fil: Logé, Roland. Ecole Polytechnique Fédérale de Lausanne; Suiza
Fil: Leinenbach, Christian. No especifíca;
Fil: Shinohara, Takenao. No especifíca;
Fil: Strobl, Markus. Laboratory for Neutron Scattering and Imaging; Suiza
Materia
Bragg edge tomography
additive manufacturing
316L
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/216696

id CONICETDig_27ba1d9a8fd1cce3ce085526493e15ea
oai_identifier_str oai:ri.conicet.gov.ar:11336/216696
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Bragg edge tomography characterization of additively manufactured 316L steelBusi, MatteoPolatidis, EfthymiosMalamud, FlorenciaKockelmann, WinfriedMorgano, ManuelKaestner, AndersTremsin, AntonKalentics, NikolaLogé, RolandLeinenbach, ChristianShinohara, TakenaoStrobl, MarkusBragg edge tomographyadditive manufacturing316Lhttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2In this work we perform a neutron Bragg edge tomography of stainless steel 316L additive manufacturing samples, one as built via standard laser powder bed fusion, and one using the novel three-dimensional (3D) laser shock peening technique. First, we consider conventional attenuation tomography of the two samples by integrating the signal for neutron wavelengths beyond the last Bragg edge, to analyze the bulk density properties of the material. This is used to map defects, such as porosities or cracks, which yield a lower density. Second, we obtain strain maps for each of the tomography projections by tracking the wavelength of the strongest Bragg edge corresponding to the {111} lattice plane family. Algebraic reconstruction techniques are used to obtain volumetric 3D maps of the strain in the bulk of the samples. It is found that not only the volume of the sample where the shock peening treatment was carried out yields a higher bulk density, but also a deep and remarkable compressive strain region. Finally, the analysis of the Bragg edge heights as a function of the projection angle is used to describe qualitatively crystallographic texture properties of the samples.Fil: Busi, Matteo. Laboratory for Neutron Scattering and Imaging; SuizaFil: Polatidis, Efthymios. Laboratory for Neutron Scattering and Imaging; SuizaFil: Malamud, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Kockelmann, Winfried. No especifíca;Fil: Morgano, Manuel. No especifíca;Fil: Kaestner, Anders. Laboratory for Neutron Scattering and Imaging; SuizaFil: Tremsin, Anton. University of California at Berkeley; Estados UnidosFil: Kalentics, Nikola. Ecole Polytechnique Fédérale de Lausanne; SuizaFil: Logé, Roland. Ecole Polytechnique Fédérale de Lausanne; SuizaFil: Leinenbach, Christian. No especifíca;Fil: Shinohara, Takenao. No especifíca;Fil: Strobl, Markus. Laboratory for Neutron Scattering and Imaging; SuizaAmerican Physical Society2022-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/216696Busi, Matteo; Polatidis, Efthymios; Malamud, Florencia; Kockelmann, Winfried; Morgano, Manuel; et al.; Bragg edge tomography characterization of additively manufactured 316L steel; American Physical Society; Physical Review Materials; 6; 5; 5-2022; 1-82475-9953CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevMaterials.6.053602info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:04:30Zoai:ri.conicet.gov.ar:11336/216696instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:04:30.845CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Bragg edge tomography characterization of additively manufactured 316L steel
title Bragg edge tomography characterization of additively manufactured 316L steel
spellingShingle Bragg edge tomography characterization of additively manufactured 316L steel
Busi, Matteo
Bragg edge tomography
additive manufacturing
316L
title_short Bragg edge tomography characterization of additively manufactured 316L steel
title_full Bragg edge tomography characterization of additively manufactured 316L steel
title_fullStr Bragg edge tomography characterization of additively manufactured 316L steel
title_full_unstemmed Bragg edge tomography characterization of additively manufactured 316L steel
title_sort Bragg edge tomography characterization of additively manufactured 316L steel
dc.creator.none.fl_str_mv Busi, Matteo
Polatidis, Efthymios
Malamud, Florencia
Kockelmann, Winfried
Morgano, Manuel
Kaestner, Anders
Tremsin, Anton
Kalentics, Nikola
Logé, Roland
Leinenbach, Christian
Shinohara, Takenao
Strobl, Markus
author Busi, Matteo
author_facet Busi, Matteo
Polatidis, Efthymios
Malamud, Florencia
Kockelmann, Winfried
Morgano, Manuel
Kaestner, Anders
Tremsin, Anton
Kalentics, Nikola
Logé, Roland
Leinenbach, Christian
Shinohara, Takenao
Strobl, Markus
author_role author
author2 Polatidis, Efthymios
Malamud, Florencia
Kockelmann, Winfried
Morgano, Manuel
Kaestner, Anders
Tremsin, Anton
Kalentics, Nikola
Logé, Roland
Leinenbach, Christian
Shinohara, Takenao
Strobl, Markus
author2_role author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Bragg edge tomography
additive manufacturing
316L
topic Bragg edge tomography
additive manufacturing
316L
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv In this work we perform a neutron Bragg edge tomography of stainless steel 316L additive manufacturing samples, one as built via standard laser powder bed fusion, and one using the novel three-dimensional (3D) laser shock peening technique. First, we consider conventional attenuation tomography of the two samples by integrating the signal for neutron wavelengths beyond the last Bragg edge, to analyze the bulk density properties of the material. This is used to map defects, such as porosities or cracks, which yield a lower density. Second, we obtain strain maps for each of the tomography projections by tracking the wavelength of the strongest Bragg edge corresponding to the {111} lattice plane family. Algebraic reconstruction techniques are used to obtain volumetric 3D maps of the strain in the bulk of the samples. It is found that not only the volume of the sample where the shock peening treatment was carried out yields a higher bulk density, but also a deep and remarkable compressive strain region. Finally, the analysis of the Bragg edge heights as a function of the projection angle is used to describe qualitatively crystallographic texture properties of the samples.
Fil: Busi, Matteo. Laboratory for Neutron Scattering and Imaging; Suiza
Fil: Polatidis, Efthymios. Laboratory for Neutron Scattering and Imaging; Suiza
Fil: Malamud, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Kockelmann, Winfried. No especifíca;
Fil: Morgano, Manuel. No especifíca;
Fil: Kaestner, Anders. Laboratory for Neutron Scattering and Imaging; Suiza
Fil: Tremsin, Anton. University of California at Berkeley; Estados Unidos
Fil: Kalentics, Nikola. Ecole Polytechnique Fédérale de Lausanne; Suiza
Fil: Logé, Roland. Ecole Polytechnique Fédérale de Lausanne; Suiza
Fil: Leinenbach, Christian. No especifíca;
Fil: Shinohara, Takenao. No especifíca;
Fil: Strobl, Markus. Laboratory for Neutron Scattering and Imaging; Suiza
description In this work we perform a neutron Bragg edge tomography of stainless steel 316L additive manufacturing samples, one as built via standard laser powder bed fusion, and one using the novel three-dimensional (3D) laser shock peening technique. First, we consider conventional attenuation tomography of the two samples by integrating the signal for neutron wavelengths beyond the last Bragg edge, to analyze the bulk density properties of the material. This is used to map defects, such as porosities or cracks, which yield a lower density. Second, we obtain strain maps for each of the tomography projections by tracking the wavelength of the strongest Bragg edge corresponding to the {111} lattice plane family. Algebraic reconstruction techniques are used to obtain volumetric 3D maps of the strain in the bulk of the samples. It is found that not only the volume of the sample where the shock peening treatment was carried out yields a higher bulk density, but also a deep and remarkable compressive strain region. Finally, the analysis of the Bragg edge heights as a function of the projection angle is used to describe qualitatively crystallographic texture properties of the samples.
publishDate 2022
dc.date.none.fl_str_mv 2022-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/216696
Busi, Matteo; Polatidis, Efthymios; Malamud, Florencia; Kockelmann, Winfried; Morgano, Manuel; et al.; Bragg edge tomography characterization of additively manufactured 316L steel; American Physical Society; Physical Review Materials; 6; 5; 5-2022; 1-8
2475-9953
CONICET Digital
CONICET
url http://hdl.handle.net/11336/216696
identifier_str_mv Busi, Matteo; Polatidis, Efthymios; Malamud, Florencia; Kockelmann, Winfried; Morgano, Manuel; et al.; Bragg edge tomography characterization of additively manufactured 316L steel; American Physical Society; Physical Review Materials; 6; 5; 5-2022; 1-8
2475-9953
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevMaterials.6.053602
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980152633458688
score 12.993085