Mapping environmental susceptibility to Saint Louis encephalitis virus, based on a decision tree model of remotelysensed data
- Autores
- Rotela, Camilo Hugo; Spinsanti, Lorena Ivana; Lamfri, Mario; Contigiani de Minio, Marta Silvia; Almiron, Walter Ricardo; Scavuzzo, Carlos Marcelo
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In response to the first human outbreak (January - May 2005) of Saint Louis encephalitis (SLE) virus in Córdoba province, Argentina, we developed an environmental SLE virus risk map for the capital, i.e. Córdoba city. The aim was to provide a map capable of detecting macro-environmental factors associated with the spatial distribution of SLE cases, based on remotely sensed data and a geographical information system. Vegetation, soil brightness, humidity status, distances to water-bodies and areas covered by vegetation were assessed based on pre-outbreak images provided by the Landsat 5TM satellite. A strong inverse relationship between the number of humans infected by SLEV and distance to high-vigor vegetation was noted. A statistical non-hierarchic decision tree model was constructed, based on environmental variables representing the areas surrounding patient residences. From this point of view, 18% of the city could be classified as being at high risk for SLEV infection, while 34% carried a low risk, or none at all. Taking the whole 2005 epidemic into account, 80% of the cases came from areas classified by the model as medium-high or high risk. Almost 46% of the cases were registered in high-risk areas, while there were no cases (0%) in areas affirmed as risk free.
Fil: Rotela, Camilo Hugo. Comision Nacional de Actividades Espaciales; Argentina
Fil: Spinsanti, Lorena Ivana. Universidad Nacional de Córdoba. Facultad de Medicina. Instituto de Virología "Dr. J. M. Vanella"; Argentina
Fil: Lamfri, Mario. Comision Nacional de Actividades Espaciales; Argentina
Fil: Contigiani de Minio, Marta Silvia. Universidad Nacional de Córdoba. Facultad de Medicina. Instituto de Virología "Dr. J. M. Vanella"; Argentina
Fil: Almiron, Walter Ricardo. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Centro de Investigaciones Entomológicas de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina
Fil: Scavuzzo, Carlos Marcelo. Comision Nacional de Actividades Espaciales; Argentina - Materia
-
LANDSCAPE EPIDEMIOLOGY
REMOTE SENSING
RISK MAP
SAINT LOUIS ENCEPHALITIS
ARGENTINA - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/42990
Ver los metadatos del registro completo
id |
CONICETDig_d720ac0b0f2869630eff6358c4babd7b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/42990 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Mapping environmental susceptibility to Saint Louis encephalitis virus, based on a decision tree model of remotelysensed dataRotela, Camilo HugoSpinsanti, Lorena IvanaLamfri, MarioContigiani de Minio, Marta SilviaAlmiron, Walter RicardoScavuzzo, Carlos MarceloLANDSCAPE EPIDEMIOLOGYREMOTE SENSINGRISK MAPSAINT LOUIS ENCEPHALITISARGENTINAhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1In response to the first human outbreak (January - May 2005) of Saint Louis encephalitis (SLE) virus in Córdoba province, Argentina, we developed an environmental SLE virus risk map for the capital, i.e. Córdoba city. The aim was to provide a map capable of detecting macro-environmental factors associated with the spatial distribution of SLE cases, based on remotely sensed data and a geographical information system. Vegetation, soil brightness, humidity status, distances to water-bodies and areas covered by vegetation were assessed based on pre-outbreak images provided by the Landsat 5TM satellite. A strong inverse relationship between the number of humans infected by SLEV and distance to high-vigor vegetation was noted. A statistical non-hierarchic decision tree model was constructed, based on environmental variables representing the areas surrounding patient residences. From this point of view, 18% of the city could be classified as being at high risk for SLEV infection, while 34% carried a low risk, or none at all. Taking the whole 2005 epidemic into account, 80% of the cases came from areas classified by the model as medium-high or high risk. Almost 46% of the cases were registered in high-risk areas, while there were no cases (0%) in areas affirmed as risk free.Fil: Rotela, Camilo Hugo. Comision Nacional de Actividades Espaciales; ArgentinaFil: Spinsanti, Lorena Ivana. Universidad Nacional de Córdoba. Facultad de Medicina. Instituto de Virología "Dr. J. M. Vanella"; ArgentinaFil: Lamfri, Mario. Comision Nacional de Actividades Espaciales; ArgentinaFil: Contigiani de Minio, Marta Silvia. Universidad Nacional de Córdoba. Facultad de Medicina. Instituto de Virología "Dr. J. M. Vanella"; ArgentinaFil: Almiron, Walter Ricardo. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Centro de Investigaciones Entomológicas de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; ArgentinaFil: Scavuzzo, Carlos Marcelo. Comision Nacional de Actividades Espaciales; ArgentinaUniv Naples Federico Ii2011-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/42990Rotela, Camilo Hugo; Spinsanti, Lorena Ivana; Lamfri, Mario; Contigiani de Minio, Marta Silvia; Almiron, Walter Ricardo; et al.; Mapping environmental susceptibility to Saint Louis encephalitis virus, based on a decision tree model of remotelysensed data; Univ Naples Federico Ii; Geospatial Health; 6; 1; 11-2011; 85-941827-19871970-7096CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://geospatialhealth.net/index.php/gh/article/view/160info:eu-repo/semantics/altIdentifier/doi/10.4081/gh.2011.160info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:55:47Zoai:ri.conicet.gov.ar:11336/42990instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:55:47.346CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Mapping environmental susceptibility to Saint Louis encephalitis virus, based on a decision tree model of remotelysensed data |
title |
Mapping environmental susceptibility to Saint Louis encephalitis virus, based on a decision tree model of remotelysensed data |
spellingShingle |
Mapping environmental susceptibility to Saint Louis encephalitis virus, based on a decision tree model of remotelysensed data Rotela, Camilo Hugo LANDSCAPE EPIDEMIOLOGY REMOTE SENSING RISK MAP SAINT LOUIS ENCEPHALITIS ARGENTINA |
title_short |
Mapping environmental susceptibility to Saint Louis encephalitis virus, based on a decision tree model of remotelysensed data |
title_full |
Mapping environmental susceptibility to Saint Louis encephalitis virus, based on a decision tree model of remotelysensed data |
title_fullStr |
Mapping environmental susceptibility to Saint Louis encephalitis virus, based on a decision tree model of remotelysensed data |
title_full_unstemmed |
Mapping environmental susceptibility to Saint Louis encephalitis virus, based on a decision tree model of remotelysensed data |
title_sort |
Mapping environmental susceptibility to Saint Louis encephalitis virus, based on a decision tree model of remotelysensed data |
dc.creator.none.fl_str_mv |
Rotela, Camilo Hugo Spinsanti, Lorena Ivana Lamfri, Mario Contigiani de Minio, Marta Silvia Almiron, Walter Ricardo Scavuzzo, Carlos Marcelo |
author |
Rotela, Camilo Hugo |
author_facet |
Rotela, Camilo Hugo Spinsanti, Lorena Ivana Lamfri, Mario Contigiani de Minio, Marta Silvia Almiron, Walter Ricardo Scavuzzo, Carlos Marcelo |
author_role |
author |
author2 |
Spinsanti, Lorena Ivana Lamfri, Mario Contigiani de Minio, Marta Silvia Almiron, Walter Ricardo Scavuzzo, Carlos Marcelo |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
LANDSCAPE EPIDEMIOLOGY REMOTE SENSING RISK MAP SAINT LOUIS ENCEPHALITIS ARGENTINA |
topic |
LANDSCAPE EPIDEMIOLOGY REMOTE SENSING RISK MAP SAINT LOUIS ENCEPHALITIS ARGENTINA |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In response to the first human outbreak (January - May 2005) of Saint Louis encephalitis (SLE) virus in Córdoba province, Argentina, we developed an environmental SLE virus risk map for the capital, i.e. Córdoba city. The aim was to provide a map capable of detecting macro-environmental factors associated with the spatial distribution of SLE cases, based on remotely sensed data and a geographical information system. Vegetation, soil brightness, humidity status, distances to water-bodies and areas covered by vegetation were assessed based on pre-outbreak images provided by the Landsat 5TM satellite. A strong inverse relationship between the number of humans infected by SLEV and distance to high-vigor vegetation was noted. A statistical non-hierarchic decision tree model was constructed, based on environmental variables representing the areas surrounding patient residences. From this point of view, 18% of the city could be classified as being at high risk for SLEV infection, while 34% carried a low risk, or none at all. Taking the whole 2005 epidemic into account, 80% of the cases came from areas classified by the model as medium-high or high risk. Almost 46% of the cases were registered in high-risk areas, while there were no cases (0%) in areas affirmed as risk free. Fil: Rotela, Camilo Hugo. Comision Nacional de Actividades Espaciales; Argentina Fil: Spinsanti, Lorena Ivana. Universidad Nacional de Córdoba. Facultad de Medicina. Instituto de Virología "Dr. J. M. Vanella"; Argentina Fil: Lamfri, Mario. Comision Nacional de Actividades Espaciales; Argentina Fil: Contigiani de Minio, Marta Silvia. Universidad Nacional de Córdoba. Facultad de Medicina. Instituto de Virología "Dr. J. M. Vanella"; Argentina Fil: Almiron, Walter Ricardo. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Centro de Investigaciones Entomológicas de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina Fil: Scavuzzo, Carlos Marcelo. Comision Nacional de Actividades Espaciales; Argentina |
description |
In response to the first human outbreak (January - May 2005) of Saint Louis encephalitis (SLE) virus in Córdoba province, Argentina, we developed an environmental SLE virus risk map for the capital, i.e. Córdoba city. The aim was to provide a map capable of detecting macro-environmental factors associated with the spatial distribution of SLE cases, based on remotely sensed data and a geographical information system. Vegetation, soil brightness, humidity status, distances to water-bodies and areas covered by vegetation were assessed based on pre-outbreak images provided by the Landsat 5TM satellite. A strong inverse relationship between the number of humans infected by SLEV and distance to high-vigor vegetation was noted. A statistical non-hierarchic decision tree model was constructed, based on environmental variables representing the areas surrounding patient residences. From this point of view, 18% of the city could be classified as being at high risk for SLEV infection, while 34% carried a low risk, or none at all. Taking the whole 2005 epidemic into account, 80% of the cases came from areas classified by the model as medium-high or high risk. Almost 46% of the cases were registered in high-risk areas, while there were no cases (0%) in areas affirmed as risk free. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/42990 Rotela, Camilo Hugo; Spinsanti, Lorena Ivana; Lamfri, Mario; Contigiani de Minio, Marta Silvia; Almiron, Walter Ricardo; et al.; Mapping environmental susceptibility to Saint Louis encephalitis virus, based on a decision tree model of remotelysensed data; Univ Naples Federico Ii; Geospatial Health; 6; 1; 11-2011; 85-94 1827-1987 1970-7096 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/42990 |
identifier_str_mv |
Rotela, Camilo Hugo; Spinsanti, Lorena Ivana; Lamfri, Mario; Contigiani de Minio, Marta Silvia; Almiron, Walter Ricardo; et al.; Mapping environmental susceptibility to Saint Louis encephalitis virus, based on a decision tree model of remotelysensed data; Univ Naples Federico Ii; Geospatial Health; 6; 1; 11-2011; 85-94 1827-1987 1970-7096 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://geospatialhealth.net/index.php/gh/article/view/160 info:eu-repo/semantics/altIdentifier/doi/10.4081/gh.2011.160 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Univ Naples Federico Ii |
publisher.none.fl_str_mv |
Univ Naples Federico Ii |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613679413198848 |
score |
13.070432 |