Macroalgae degradation promotes microbial iron reduction via electron shuttling in coastal Antarctic sediments
- Autores
- Aromokeye, David A.; Willis Poratti, Graciana; Wunder, Lea C.; Yin, Xiuran; Wendt, Jenny; Richter Heitmann, Tim; Henkel, Susann; Vázquez, Susana Claudia; Elvert, Marcus; Mac Cormack, Walter Patricio; Friedrich, Michael W.
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Colonization of newly ice-free areas by marine benthic organisms intensifies burial of macroalgae detritus in Potter Cove coastal surface sediments (Western Antarctic Peninsula). Thus, fresh and labile macroalgal detritus serves as primary organic matter (OM) source for microbial degradation. Here, we investigated the effects on post-depositional microbial iron reduction in Potter Cove using sediment incubations amended with pulverized macroalgal detritus as OM source, acetate as primary product of OM degradation and lepidocrocite as reactive iron oxide to mimic in situ conditions. Humic substances analogue anthraquinone-2,6-disulfonic acid (AQDS) was also added to some treatments to simulate potential for electron shuttling. Microbial iron reduction was promoted by macroalgae and further enhanced by up to 30-folds with AQDS. Notably, while acetate amendment alone did not stimulate iron reduction, adding macroalgae alone did. Acetate, formate, lactate, butyrate and propionate were detected as fermentation products from macroalgae degradation. By combining 16S rRNA gene sequencing and RNA stable isotope probing, we reconstructed the potential microbial food chain from macroalgae degraders to iron reducers. Psychromonas, Marinifilum, Moritella, and Colwellia were detected as potential fermenters of macroalgae and fermentation products such as lactate. Members of class deltaproteobacteria including Sva1033, Desulfuromonas, and Desulfuromusa together with Arcobacter (former phylum Epsilonbacteraeota, now Campylobacterota) acted as dissimilatory iron reducers. Our findings demonstrate that increasing burial of macroalgal detritus in an Antarctic fjord affected by glacier retreat intensifies early diagenetic processes such as iron reduction. Under scenarios of global warming, the active microbial populations identified above will expand their environmental function, facilitate OM remineralisation, and contribute to an increased release of iron and CO2 from sediments. Such indirect consequences of glacial retreat are often overlooked but might, on a regional scale, be relevant for the assessment of future nutrient and carbon fluxes.
Fil: Aromokeye, David A.. Universitat Bremen; Alemania
Fil: Willis Poratti, Graciana. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Ministerio de Relaciones Exteriores, Comercio Interno y Culto. Dirección Nacional del Antártico. Instituto Antártico Argentino; Argentina
Fil: Wunder, Lea C.. Universitat Bremen; Alemania
Fil: Yin, Xiuran. Universitat Bremen; Alemania
Fil: Wendt, Jenny. Universitat Bremen; Alemania
Fil: Richter Heitmann, Tim. Universitat Bremen; Alemania
Fil: Henkel, Susann. Universitat Bremen; Alemania
Fil: Vázquez, Susana Claudia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Nanobiotecnología. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Nanobiotecnología; Argentina
Fil: Elvert, Marcus. Universitat Bremen; Alemania
Fil: Mac Cormack, Walter Patricio. Ministerio de Relaciones Exteriores, Comercio Interno y Culto. Dirección Nacional del Antártico. Instituto Antártico Argentino; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Nanobiotecnología. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Nanobiotecnología; Argentina
Fil: Friedrich, Michael W.. Universitat Bremen; Alemania - Materia
-
ANTARCTICA
CLIMATE CHANGE
MARINE SEDIMENTS
MICROBIAL IRON-REDUCTION
ORGANIC MATTER DEGRADATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/170656
Ver los metadatos del registro completo
id |
CONICETDig_d71d5c7df0f3eef79db84a986765cfbb |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/170656 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Macroalgae degradation promotes microbial iron reduction via electron shuttling in coastal Antarctic sedimentsAromokeye, David A.Willis Poratti, GracianaWunder, Lea C.Yin, XiuranWendt, JennyRichter Heitmann, TimHenkel, SusannVázquez, Susana ClaudiaElvert, MarcusMac Cormack, Walter PatricioFriedrich, Michael W.ANTARCTICACLIMATE CHANGEMARINE SEDIMENTSMICROBIAL IRON-REDUCTIONORGANIC MATTER DEGRADATIONhttps://purl.org/becyt/ford/2.8https://purl.org/becyt/ford/2https://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Colonization of newly ice-free areas by marine benthic organisms intensifies burial of macroalgae detritus in Potter Cove coastal surface sediments (Western Antarctic Peninsula). Thus, fresh and labile macroalgal detritus serves as primary organic matter (OM) source for microbial degradation. Here, we investigated the effects on post-depositional microbial iron reduction in Potter Cove using sediment incubations amended with pulverized macroalgal detritus as OM source, acetate as primary product of OM degradation and lepidocrocite as reactive iron oxide to mimic in situ conditions. Humic substances analogue anthraquinone-2,6-disulfonic acid (AQDS) was also added to some treatments to simulate potential for electron shuttling. Microbial iron reduction was promoted by macroalgae and further enhanced by up to 30-folds with AQDS. Notably, while acetate amendment alone did not stimulate iron reduction, adding macroalgae alone did. Acetate, formate, lactate, butyrate and propionate were detected as fermentation products from macroalgae degradation. By combining 16S rRNA gene sequencing and RNA stable isotope probing, we reconstructed the potential microbial food chain from macroalgae degraders to iron reducers. Psychromonas, Marinifilum, Moritella, and Colwellia were detected as potential fermenters of macroalgae and fermentation products such as lactate. Members of class deltaproteobacteria including Sva1033, Desulfuromonas, and Desulfuromusa together with Arcobacter (former phylum Epsilonbacteraeota, now Campylobacterota) acted as dissimilatory iron reducers. Our findings demonstrate that increasing burial of macroalgal detritus in an Antarctic fjord affected by glacier retreat intensifies early diagenetic processes such as iron reduction. Under scenarios of global warming, the active microbial populations identified above will expand their environmental function, facilitate OM remineralisation, and contribute to an increased release of iron and CO2 from sediments. Such indirect consequences of glacial retreat are often overlooked but might, on a regional scale, be relevant for the assessment of future nutrient and carbon fluxes.Fil: Aromokeye, David A.. Universitat Bremen; AlemaniaFil: Willis Poratti, Graciana. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Ministerio de Relaciones Exteriores, Comercio Interno y Culto. Dirección Nacional del Antártico. Instituto Antártico Argentino; ArgentinaFil: Wunder, Lea C.. Universitat Bremen; AlemaniaFil: Yin, Xiuran. Universitat Bremen; AlemaniaFil: Wendt, Jenny. Universitat Bremen; AlemaniaFil: Richter Heitmann, Tim. Universitat Bremen; AlemaniaFil: Henkel, Susann. Universitat Bremen; AlemaniaFil: Vázquez, Susana Claudia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Nanobiotecnología. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Nanobiotecnología; ArgentinaFil: Elvert, Marcus. Universitat Bremen; AlemaniaFil: Mac Cormack, Walter Patricio. Ministerio de Relaciones Exteriores, Comercio Interno y Culto. Dirección Nacional del Antártico. Instituto Antártico Argentino; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Nanobiotecnología. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Nanobiotecnología; ArgentinaFil: Friedrich, Michael W.. Universitat Bremen; AlemaniaPergamon-Elsevier Science Ltd2021-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/170656Aromokeye, David A.; Willis Poratti, Graciana; Wunder, Lea C.; Yin, Xiuran; Wendt, Jenny; et al.; Macroalgae degradation promotes microbial iron reduction via electron shuttling in coastal Antarctic sediments; Pergamon-Elsevier Science Ltd; Environment International; 156; 11-2021; 1-110160-4120CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0160412021002270info:eu-repo/semantics/altIdentifier/doi/10.1016/j.envint.2021.106602info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:37:15Zoai:ri.conicet.gov.ar:11336/170656instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:37:15.436CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Macroalgae degradation promotes microbial iron reduction via electron shuttling in coastal Antarctic sediments |
title |
Macroalgae degradation promotes microbial iron reduction via electron shuttling in coastal Antarctic sediments |
spellingShingle |
Macroalgae degradation promotes microbial iron reduction via electron shuttling in coastal Antarctic sediments Aromokeye, David A. ANTARCTICA CLIMATE CHANGE MARINE SEDIMENTS MICROBIAL IRON-REDUCTION ORGANIC MATTER DEGRADATION |
title_short |
Macroalgae degradation promotes microbial iron reduction via electron shuttling in coastal Antarctic sediments |
title_full |
Macroalgae degradation promotes microbial iron reduction via electron shuttling in coastal Antarctic sediments |
title_fullStr |
Macroalgae degradation promotes microbial iron reduction via electron shuttling in coastal Antarctic sediments |
title_full_unstemmed |
Macroalgae degradation promotes microbial iron reduction via electron shuttling in coastal Antarctic sediments |
title_sort |
Macroalgae degradation promotes microbial iron reduction via electron shuttling in coastal Antarctic sediments |
dc.creator.none.fl_str_mv |
Aromokeye, David A. Willis Poratti, Graciana Wunder, Lea C. Yin, Xiuran Wendt, Jenny Richter Heitmann, Tim Henkel, Susann Vázquez, Susana Claudia Elvert, Marcus Mac Cormack, Walter Patricio Friedrich, Michael W. |
author |
Aromokeye, David A. |
author_facet |
Aromokeye, David A. Willis Poratti, Graciana Wunder, Lea C. Yin, Xiuran Wendt, Jenny Richter Heitmann, Tim Henkel, Susann Vázquez, Susana Claudia Elvert, Marcus Mac Cormack, Walter Patricio Friedrich, Michael W. |
author_role |
author |
author2 |
Willis Poratti, Graciana Wunder, Lea C. Yin, Xiuran Wendt, Jenny Richter Heitmann, Tim Henkel, Susann Vázquez, Susana Claudia Elvert, Marcus Mac Cormack, Walter Patricio Friedrich, Michael W. |
author2_role |
author author author author author author author author author author |
dc.subject.none.fl_str_mv |
ANTARCTICA CLIMATE CHANGE MARINE SEDIMENTS MICROBIAL IRON-REDUCTION ORGANIC MATTER DEGRADATION |
topic |
ANTARCTICA CLIMATE CHANGE MARINE SEDIMENTS MICROBIAL IRON-REDUCTION ORGANIC MATTER DEGRADATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.8 https://purl.org/becyt/ford/2 https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Colonization of newly ice-free areas by marine benthic organisms intensifies burial of macroalgae detritus in Potter Cove coastal surface sediments (Western Antarctic Peninsula). Thus, fresh and labile macroalgal detritus serves as primary organic matter (OM) source for microbial degradation. Here, we investigated the effects on post-depositional microbial iron reduction in Potter Cove using sediment incubations amended with pulverized macroalgal detritus as OM source, acetate as primary product of OM degradation and lepidocrocite as reactive iron oxide to mimic in situ conditions. Humic substances analogue anthraquinone-2,6-disulfonic acid (AQDS) was also added to some treatments to simulate potential for electron shuttling. Microbial iron reduction was promoted by macroalgae and further enhanced by up to 30-folds with AQDS. Notably, while acetate amendment alone did not stimulate iron reduction, adding macroalgae alone did. Acetate, formate, lactate, butyrate and propionate were detected as fermentation products from macroalgae degradation. By combining 16S rRNA gene sequencing and RNA stable isotope probing, we reconstructed the potential microbial food chain from macroalgae degraders to iron reducers. Psychromonas, Marinifilum, Moritella, and Colwellia were detected as potential fermenters of macroalgae and fermentation products such as lactate. Members of class deltaproteobacteria including Sva1033, Desulfuromonas, and Desulfuromusa together with Arcobacter (former phylum Epsilonbacteraeota, now Campylobacterota) acted as dissimilatory iron reducers. Our findings demonstrate that increasing burial of macroalgal detritus in an Antarctic fjord affected by glacier retreat intensifies early diagenetic processes such as iron reduction. Under scenarios of global warming, the active microbial populations identified above will expand their environmental function, facilitate OM remineralisation, and contribute to an increased release of iron and CO2 from sediments. Such indirect consequences of glacial retreat are often overlooked but might, on a regional scale, be relevant for the assessment of future nutrient and carbon fluxes. Fil: Aromokeye, David A.. Universitat Bremen; Alemania Fil: Willis Poratti, Graciana. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Ministerio de Relaciones Exteriores, Comercio Interno y Culto. Dirección Nacional del Antártico. Instituto Antártico Argentino; Argentina Fil: Wunder, Lea C.. Universitat Bremen; Alemania Fil: Yin, Xiuran. Universitat Bremen; Alemania Fil: Wendt, Jenny. Universitat Bremen; Alemania Fil: Richter Heitmann, Tim. Universitat Bremen; Alemania Fil: Henkel, Susann. Universitat Bremen; Alemania Fil: Vázquez, Susana Claudia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Nanobiotecnología. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Nanobiotecnología; Argentina Fil: Elvert, Marcus. Universitat Bremen; Alemania Fil: Mac Cormack, Walter Patricio. Ministerio de Relaciones Exteriores, Comercio Interno y Culto. Dirección Nacional del Antártico. Instituto Antártico Argentino; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Nanobiotecnología. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Nanobiotecnología; Argentina Fil: Friedrich, Michael W.. Universitat Bremen; Alemania |
description |
Colonization of newly ice-free areas by marine benthic organisms intensifies burial of macroalgae detritus in Potter Cove coastal surface sediments (Western Antarctic Peninsula). Thus, fresh and labile macroalgal detritus serves as primary organic matter (OM) source for microbial degradation. Here, we investigated the effects on post-depositional microbial iron reduction in Potter Cove using sediment incubations amended with pulverized macroalgal detritus as OM source, acetate as primary product of OM degradation and lepidocrocite as reactive iron oxide to mimic in situ conditions. Humic substances analogue anthraquinone-2,6-disulfonic acid (AQDS) was also added to some treatments to simulate potential for electron shuttling. Microbial iron reduction was promoted by macroalgae and further enhanced by up to 30-folds with AQDS. Notably, while acetate amendment alone did not stimulate iron reduction, adding macroalgae alone did. Acetate, formate, lactate, butyrate and propionate were detected as fermentation products from macroalgae degradation. By combining 16S rRNA gene sequencing and RNA stable isotope probing, we reconstructed the potential microbial food chain from macroalgae degraders to iron reducers. Psychromonas, Marinifilum, Moritella, and Colwellia were detected as potential fermenters of macroalgae and fermentation products such as lactate. Members of class deltaproteobacteria including Sva1033, Desulfuromonas, and Desulfuromusa together with Arcobacter (former phylum Epsilonbacteraeota, now Campylobacterota) acted as dissimilatory iron reducers. Our findings demonstrate that increasing burial of macroalgal detritus in an Antarctic fjord affected by glacier retreat intensifies early diagenetic processes such as iron reduction. Under scenarios of global warming, the active microbial populations identified above will expand their environmental function, facilitate OM remineralisation, and contribute to an increased release of iron and CO2 from sediments. Such indirect consequences of glacial retreat are often overlooked but might, on a regional scale, be relevant for the assessment of future nutrient and carbon fluxes. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/170656 Aromokeye, David A.; Willis Poratti, Graciana; Wunder, Lea C.; Yin, Xiuran; Wendt, Jenny; et al.; Macroalgae degradation promotes microbial iron reduction via electron shuttling in coastal Antarctic sediments; Pergamon-Elsevier Science Ltd; Environment International; 156; 11-2021; 1-11 0160-4120 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/170656 |
identifier_str_mv |
Aromokeye, David A.; Willis Poratti, Graciana; Wunder, Lea C.; Yin, Xiuran; Wendt, Jenny; et al.; Macroalgae degradation promotes microbial iron reduction via electron shuttling in coastal Antarctic sediments; Pergamon-Elsevier Science Ltd; Environment International; 156; 11-2021; 1-11 0160-4120 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0160412021002270 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.envint.2021.106602 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613172688846848 |
score |
13.070432 |