Macroalgae degradation promotes microbial iron reduction via electron shuttling in coastal Antarctic sediments

Autores
Aromokeye, David A.; Willis Poratti, Graciana; Wunder, Lea C.; Yin, Xiuran; Wendt, Jenny; Richter Heitmann, Tim; Henkel, Susann; Vázquez, Susana Claudia; Elvert, Marcus; Mac Cormack, Walter Patricio; Friedrich, Michael W.
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Colonization of newly ice-free areas by marine benthic organisms intensifies burial of macroalgae detritus in Potter Cove coastal surface sediments (Western Antarctic Peninsula). Thus, fresh and labile macroalgal detritus serves as primary organic matter (OM) source for microbial degradation. Here, we investigated the effects on post-depositional microbial iron reduction in Potter Cove using sediment incubations amended with pulverized macroalgal detritus as OM source, acetate as primary product of OM degradation and lepidocrocite as reactive iron oxide to mimic in situ conditions. Humic substances analogue anthraquinone-2,6-disulfonic acid (AQDS) was also added to some treatments to simulate potential for electron shuttling. Microbial iron reduction was promoted by macroalgae and further enhanced by up to 30-folds with AQDS. Notably, while acetate amendment alone did not stimulate iron reduction, adding macroalgae alone did. Acetate, formate, lactate, butyrate and propionate were detected as fermentation products from macroalgae degradation. By combining 16S rRNA gene sequencing and RNA stable isotope probing, we reconstructed the potential microbial food chain from macroalgae degraders to iron reducers. Psychromonas, Marinifilum, Moritella, and Colwellia were detected as potential fermenters of macroalgae and fermentation products such as lactate. Members of class deltaproteobacteria including Sva1033, Desulfuromonas, and Desulfuromusa together with Arcobacter (former phylum Epsilonbacteraeota, now Campylobacterota) acted as dissimilatory iron reducers. Our findings demonstrate that increasing burial of macroalgal detritus in an Antarctic fjord affected by glacier retreat intensifies early diagenetic processes such as iron reduction. Under scenarios of global warming, the active microbial populations identified above will expand their environmental function, facilitate OM remineralisation, and contribute to an increased release of iron and CO2 from sediments. Such indirect consequences of glacial retreat are often overlooked but might, on a regional scale, be relevant for the assessment of future nutrient and carbon fluxes.
Fil: Aromokeye, David A.. Universitat Bremen; Alemania
Fil: Willis Poratti, Graciana. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Ministerio de Relaciones Exteriores, Comercio Interno y Culto. Dirección Nacional del Antártico. Instituto Antártico Argentino; Argentina
Fil: Wunder, Lea C.. Universitat Bremen; Alemania
Fil: Yin, Xiuran. Universitat Bremen; Alemania
Fil: Wendt, Jenny. Universitat Bremen; Alemania
Fil: Richter Heitmann, Tim. Universitat Bremen; Alemania
Fil: Henkel, Susann. Universitat Bremen; Alemania
Fil: Vázquez, Susana Claudia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Nanobiotecnología. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Nanobiotecnología; Argentina
Fil: Elvert, Marcus. Universitat Bremen; Alemania
Fil: Mac Cormack, Walter Patricio. Ministerio de Relaciones Exteriores, Comercio Interno y Culto. Dirección Nacional del Antártico. Instituto Antártico Argentino; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Nanobiotecnología. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Nanobiotecnología; Argentina
Fil: Friedrich, Michael W.. Universitat Bremen; Alemania
Materia
ANTARCTICA
CLIMATE CHANGE
MARINE SEDIMENTS
MICROBIAL IRON-REDUCTION
ORGANIC MATTER DEGRADATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/170656

id CONICETDig_d71d5c7df0f3eef79db84a986765cfbb
oai_identifier_str oai:ri.conicet.gov.ar:11336/170656
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Macroalgae degradation promotes microbial iron reduction via electron shuttling in coastal Antarctic sedimentsAromokeye, David A.Willis Poratti, GracianaWunder, Lea C.Yin, XiuranWendt, JennyRichter Heitmann, TimHenkel, SusannVázquez, Susana ClaudiaElvert, MarcusMac Cormack, Walter PatricioFriedrich, Michael W.ANTARCTICACLIMATE CHANGEMARINE SEDIMENTSMICROBIAL IRON-REDUCTIONORGANIC MATTER DEGRADATIONhttps://purl.org/becyt/ford/2.8https://purl.org/becyt/ford/2https://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Colonization of newly ice-free areas by marine benthic organisms intensifies burial of macroalgae detritus in Potter Cove coastal surface sediments (Western Antarctic Peninsula). Thus, fresh and labile macroalgal detritus serves as primary organic matter (OM) source for microbial degradation. Here, we investigated the effects on post-depositional microbial iron reduction in Potter Cove using sediment incubations amended with pulverized macroalgal detritus as OM source, acetate as primary product of OM degradation and lepidocrocite as reactive iron oxide to mimic in situ conditions. Humic substances analogue anthraquinone-2,6-disulfonic acid (AQDS) was also added to some treatments to simulate potential for electron shuttling. Microbial iron reduction was promoted by macroalgae and further enhanced by up to 30-folds with AQDS. Notably, while acetate amendment alone did not stimulate iron reduction, adding macroalgae alone did. Acetate, formate, lactate, butyrate and propionate were detected as fermentation products from macroalgae degradation. By combining 16S rRNA gene sequencing and RNA stable isotope probing, we reconstructed the potential microbial food chain from macroalgae degraders to iron reducers. Psychromonas, Marinifilum, Moritella, and Colwellia were detected as potential fermenters of macroalgae and fermentation products such as lactate. Members of class deltaproteobacteria including Sva1033, Desulfuromonas, and Desulfuromusa together with Arcobacter (former phylum Epsilonbacteraeota, now Campylobacterota) acted as dissimilatory iron reducers. Our findings demonstrate that increasing burial of macroalgal detritus in an Antarctic fjord affected by glacier retreat intensifies early diagenetic processes such as iron reduction. Under scenarios of global warming, the active microbial populations identified above will expand their environmental function, facilitate OM remineralisation, and contribute to an increased release of iron and CO2 from sediments. Such indirect consequences of glacial retreat are often overlooked but might, on a regional scale, be relevant for the assessment of future nutrient and carbon fluxes.Fil: Aromokeye, David A.. Universitat Bremen; AlemaniaFil: Willis Poratti, Graciana. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Ministerio de Relaciones Exteriores, Comercio Interno y Culto. Dirección Nacional del Antártico. Instituto Antártico Argentino; ArgentinaFil: Wunder, Lea C.. Universitat Bremen; AlemaniaFil: Yin, Xiuran. Universitat Bremen; AlemaniaFil: Wendt, Jenny. Universitat Bremen; AlemaniaFil: Richter Heitmann, Tim. Universitat Bremen; AlemaniaFil: Henkel, Susann. Universitat Bremen; AlemaniaFil: Vázquez, Susana Claudia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Nanobiotecnología. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Nanobiotecnología; ArgentinaFil: Elvert, Marcus. Universitat Bremen; AlemaniaFil: Mac Cormack, Walter Patricio. Ministerio de Relaciones Exteriores, Comercio Interno y Culto. Dirección Nacional del Antártico. Instituto Antártico Argentino; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Nanobiotecnología. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Nanobiotecnología; ArgentinaFil: Friedrich, Michael W.. Universitat Bremen; AlemaniaPergamon-Elsevier Science Ltd2021-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/170656Aromokeye, David A.; Willis Poratti, Graciana; Wunder, Lea C.; Yin, Xiuran; Wendt, Jenny; et al.; Macroalgae degradation promotes microbial iron reduction via electron shuttling in coastal Antarctic sediments; Pergamon-Elsevier Science Ltd; Environment International; 156; 11-2021; 1-110160-4120CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0160412021002270info:eu-repo/semantics/altIdentifier/doi/10.1016/j.envint.2021.106602info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:37:15Zoai:ri.conicet.gov.ar:11336/170656instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:37:15.436CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Macroalgae degradation promotes microbial iron reduction via electron shuttling in coastal Antarctic sediments
title Macroalgae degradation promotes microbial iron reduction via electron shuttling in coastal Antarctic sediments
spellingShingle Macroalgae degradation promotes microbial iron reduction via electron shuttling in coastal Antarctic sediments
Aromokeye, David A.
ANTARCTICA
CLIMATE CHANGE
MARINE SEDIMENTS
MICROBIAL IRON-REDUCTION
ORGANIC MATTER DEGRADATION
title_short Macroalgae degradation promotes microbial iron reduction via electron shuttling in coastal Antarctic sediments
title_full Macroalgae degradation promotes microbial iron reduction via electron shuttling in coastal Antarctic sediments
title_fullStr Macroalgae degradation promotes microbial iron reduction via electron shuttling in coastal Antarctic sediments
title_full_unstemmed Macroalgae degradation promotes microbial iron reduction via electron shuttling in coastal Antarctic sediments
title_sort Macroalgae degradation promotes microbial iron reduction via electron shuttling in coastal Antarctic sediments
dc.creator.none.fl_str_mv Aromokeye, David A.
Willis Poratti, Graciana
Wunder, Lea C.
Yin, Xiuran
Wendt, Jenny
Richter Heitmann, Tim
Henkel, Susann
Vázquez, Susana Claudia
Elvert, Marcus
Mac Cormack, Walter Patricio
Friedrich, Michael W.
author Aromokeye, David A.
author_facet Aromokeye, David A.
Willis Poratti, Graciana
Wunder, Lea C.
Yin, Xiuran
Wendt, Jenny
Richter Heitmann, Tim
Henkel, Susann
Vázquez, Susana Claudia
Elvert, Marcus
Mac Cormack, Walter Patricio
Friedrich, Michael W.
author_role author
author2 Willis Poratti, Graciana
Wunder, Lea C.
Yin, Xiuran
Wendt, Jenny
Richter Heitmann, Tim
Henkel, Susann
Vázquez, Susana Claudia
Elvert, Marcus
Mac Cormack, Walter Patricio
Friedrich, Michael W.
author2_role author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv ANTARCTICA
CLIMATE CHANGE
MARINE SEDIMENTS
MICROBIAL IRON-REDUCTION
ORGANIC MATTER DEGRADATION
topic ANTARCTICA
CLIMATE CHANGE
MARINE SEDIMENTS
MICROBIAL IRON-REDUCTION
ORGANIC MATTER DEGRADATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.8
https://purl.org/becyt/ford/2
https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Colonization of newly ice-free areas by marine benthic organisms intensifies burial of macroalgae detritus in Potter Cove coastal surface sediments (Western Antarctic Peninsula). Thus, fresh and labile macroalgal detritus serves as primary organic matter (OM) source for microbial degradation. Here, we investigated the effects on post-depositional microbial iron reduction in Potter Cove using sediment incubations amended with pulverized macroalgal detritus as OM source, acetate as primary product of OM degradation and lepidocrocite as reactive iron oxide to mimic in situ conditions. Humic substances analogue anthraquinone-2,6-disulfonic acid (AQDS) was also added to some treatments to simulate potential for electron shuttling. Microbial iron reduction was promoted by macroalgae and further enhanced by up to 30-folds with AQDS. Notably, while acetate amendment alone did not stimulate iron reduction, adding macroalgae alone did. Acetate, formate, lactate, butyrate and propionate were detected as fermentation products from macroalgae degradation. By combining 16S rRNA gene sequencing and RNA stable isotope probing, we reconstructed the potential microbial food chain from macroalgae degraders to iron reducers. Psychromonas, Marinifilum, Moritella, and Colwellia were detected as potential fermenters of macroalgae and fermentation products such as lactate. Members of class deltaproteobacteria including Sva1033, Desulfuromonas, and Desulfuromusa together with Arcobacter (former phylum Epsilonbacteraeota, now Campylobacterota) acted as dissimilatory iron reducers. Our findings demonstrate that increasing burial of macroalgal detritus in an Antarctic fjord affected by glacier retreat intensifies early diagenetic processes such as iron reduction. Under scenarios of global warming, the active microbial populations identified above will expand their environmental function, facilitate OM remineralisation, and contribute to an increased release of iron and CO2 from sediments. Such indirect consequences of glacial retreat are often overlooked but might, on a regional scale, be relevant for the assessment of future nutrient and carbon fluxes.
Fil: Aromokeye, David A.. Universitat Bremen; Alemania
Fil: Willis Poratti, Graciana. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Ministerio de Relaciones Exteriores, Comercio Interno y Culto. Dirección Nacional del Antártico. Instituto Antártico Argentino; Argentina
Fil: Wunder, Lea C.. Universitat Bremen; Alemania
Fil: Yin, Xiuran. Universitat Bremen; Alemania
Fil: Wendt, Jenny. Universitat Bremen; Alemania
Fil: Richter Heitmann, Tim. Universitat Bremen; Alemania
Fil: Henkel, Susann. Universitat Bremen; Alemania
Fil: Vázquez, Susana Claudia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Nanobiotecnología. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Nanobiotecnología; Argentina
Fil: Elvert, Marcus. Universitat Bremen; Alemania
Fil: Mac Cormack, Walter Patricio. Ministerio de Relaciones Exteriores, Comercio Interno y Culto. Dirección Nacional del Antártico. Instituto Antártico Argentino; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Nanobiotecnología. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Nanobiotecnología; Argentina
Fil: Friedrich, Michael W.. Universitat Bremen; Alemania
description Colonization of newly ice-free areas by marine benthic organisms intensifies burial of macroalgae detritus in Potter Cove coastal surface sediments (Western Antarctic Peninsula). Thus, fresh and labile macroalgal detritus serves as primary organic matter (OM) source for microbial degradation. Here, we investigated the effects on post-depositional microbial iron reduction in Potter Cove using sediment incubations amended with pulverized macroalgal detritus as OM source, acetate as primary product of OM degradation and lepidocrocite as reactive iron oxide to mimic in situ conditions. Humic substances analogue anthraquinone-2,6-disulfonic acid (AQDS) was also added to some treatments to simulate potential for electron shuttling. Microbial iron reduction was promoted by macroalgae and further enhanced by up to 30-folds with AQDS. Notably, while acetate amendment alone did not stimulate iron reduction, adding macroalgae alone did. Acetate, formate, lactate, butyrate and propionate were detected as fermentation products from macroalgae degradation. By combining 16S rRNA gene sequencing and RNA stable isotope probing, we reconstructed the potential microbial food chain from macroalgae degraders to iron reducers. Psychromonas, Marinifilum, Moritella, and Colwellia were detected as potential fermenters of macroalgae and fermentation products such as lactate. Members of class deltaproteobacteria including Sva1033, Desulfuromonas, and Desulfuromusa together with Arcobacter (former phylum Epsilonbacteraeota, now Campylobacterota) acted as dissimilatory iron reducers. Our findings demonstrate that increasing burial of macroalgal detritus in an Antarctic fjord affected by glacier retreat intensifies early diagenetic processes such as iron reduction. Under scenarios of global warming, the active microbial populations identified above will expand their environmental function, facilitate OM remineralisation, and contribute to an increased release of iron and CO2 from sediments. Such indirect consequences of glacial retreat are often overlooked but might, on a regional scale, be relevant for the assessment of future nutrient and carbon fluxes.
publishDate 2021
dc.date.none.fl_str_mv 2021-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/170656
Aromokeye, David A.; Willis Poratti, Graciana; Wunder, Lea C.; Yin, Xiuran; Wendt, Jenny; et al.; Macroalgae degradation promotes microbial iron reduction via electron shuttling in coastal Antarctic sediments; Pergamon-Elsevier Science Ltd; Environment International; 156; 11-2021; 1-11
0160-4120
CONICET Digital
CONICET
url http://hdl.handle.net/11336/170656
identifier_str_mv Aromokeye, David A.; Willis Poratti, Graciana; Wunder, Lea C.; Yin, Xiuran; Wendt, Jenny; et al.; Macroalgae degradation promotes microbial iron reduction via electron shuttling in coastal Antarctic sediments; Pergamon-Elsevier Science Ltd; Environment International; 156; 11-2021; 1-11
0160-4120
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0160412021002270
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.envint.2021.106602
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613172688846848
score 13.070432