Risk-constrained forward trading optimization through stochastic approximate dynamic programming
- Autores
- Gil Pugliese, Miguel Federico; Olsina, Fernando Gabriel
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- parte de libro
- Estado
- versión publicada
- Descripción
- Since the mid-twentieth century, Dynamic Programming (DP) has proved to be a flexible and powerful approach to address optimal decisions problems. Nevertheless, a decisive drawback of the conventional DP is the need for exploring the whole state space in order to find the optimal solution. The immense amount of mathematical operations involved to solve real-scale problems, constrained the application of DP to small or highly simplified cases. Indeed, state space grows exponentially with the number of variables when considering multivariate optimization. The curse of dimensionality is a well-known limitation of conventional DP algorithms for tackling large-scale problems ubiquitous in real science and engineering applications. In the last decades, many new algorithms emerged in different branches of science to overcome the inherent limitations of conventional DP. Unlike conventional DP, these algorithms avoid enumerating and calculating every possible state of a system during the optimization process. Instead, they estimate relevant features of the state space. This approach circumvents the dimensionality limitations of the conventional DP while retaining many of its advantages. In this chapter, the application of advanced stochastic dynamic programming techniques to the optimization of the forward sell strategy of a power generator subjected to delivery risk is considered. The proposed approach allows rebalancing the portfolio during the period of analysis. In electricity markets, a power generator can sell in advance part or all its future energy production at a fixed price, hedging against the high price volatility of the spot market. The strategy of eliminating the price risk by selling in advance the entire production in the forward market to a fixed price is often thought as the minimum-risk trading policy. Nonetheless, it can be proven that this is not the case for most generators. The outages of the generation units and transmission lines, as well as unforeseen limitations in the primary energy supply expose generators to delivery risk [1]. Delivery risk considerably modifies the probability distribution of profits, shifting the optimal trading strategy toward a portfolio mixing forward contracts and power sold in the spot market. Because of the size of the probability state space and the limited computing capabilities, the problem of the optimal trading strategy has not a closed form solution and thus, its determination is matter of current study. The increase in computing power and recent developments in Operational Research has brought new insights into the solution of such problems. In the past decade and by virtue of the ever increasing computational power, many methods emerged in different scientific fields with several different names: Reinforced Learning, QLearning, Neuro-Dynamic Programming, etc. All these methods were later brought together in what is currently known as Approximated Dynamic Programming (ADP) [2],[3]. These algorithms resign the exhaustive enumeration and calculation of the space-state typically performed by conventional DP. Instead, they iteratively approximate a function of the space state through stochastic simulation and statistical regression techniques, circumventing the dimensionality problem of DP. Although ADP algorithms are being used in several other fields of science, the application to design optimal trading strategies in power markets has not been proposed so far. In this chapter, ADP techniques are exploited to optimize the selling strategy of a power generator trading in a frictional market with transaction costs. Three available products are considered: selling in the spot market, and/or get involved in quarterly and one-year forward contracts. The objective of the generator is to maximize the expected profit while limiting financial risk. Decisions can be made only at the beginning of each month. At each decision stage, the current trading position can be changed at a cost in order to rebalance the portfolio.
Fil: Gil Pugliese, Miguel Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina. Instituto F/elektrische Anlagen & Energiewirtschaft; Alemania
Fil: Olsina, Fernando Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina - Materia
-
APPROXIMATE DYNAMIC PROGRAMING
MONTE CARLO
POWER TRADING
RISK-CONSTRAINED OPTIMIZATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/159835
Ver los metadatos del registro completo
id |
CONICETDig_d67599cd2cec92c0eb1ab2c6a80f1ddc |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/159835 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Risk-constrained forward trading optimization through stochastic approximate dynamic programmingGil Pugliese, Miguel FedericoOlsina, Fernando GabrielAPPROXIMATE DYNAMIC PROGRAMINGMONTE CARLOPOWER TRADINGRISK-CONSTRAINED OPTIMIZATIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Since the mid-twentieth century, Dynamic Programming (DP) has proved to be a flexible and powerful approach to address optimal decisions problems. Nevertheless, a decisive drawback of the conventional DP is the need for exploring the whole state space in order to find the optimal solution. The immense amount of mathematical operations involved to solve real-scale problems, constrained the application of DP to small or highly simplified cases. Indeed, state space grows exponentially with the number of variables when considering multivariate optimization. The curse of dimensionality is a well-known limitation of conventional DP algorithms for tackling large-scale problems ubiquitous in real science and engineering applications. In the last decades, many new algorithms emerged in different branches of science to overcome the inherent limitations of conventional DP. Unlike conventional DP, these algorithms avoid enumerating and calculating every possible state of a system during the optimization process. Instead, they estimate relevant features of the state space. This approach circumvents the dimensionality limitations of the conventional DP while retaining many of its advantages. In this chapter, the application of advanced stochastic dynamic programming techniques to the optimization of the forward sell strategy of a power generator subjected to delivery risk is considered. The proposed approach allows rebalancing the portfolio during the period of analysis. In electricity markets, a power generator can sell in advance part or all its future energy production at a fixed price, hedging against the high price volatility of the spot market. The strategy of eliminating the price risk by selling in advance the entire production in the forward market to a fixed price is often thought as the minimum-risk trading policy. Nonetheless, it can be proven that this is not the case for most generators. The outages of the generation units and transmission lines, as well as unforeseen limitations in the primary energy supply expose generators to delivery risk [1]. Delivery risk considerably modifies the probability distribution of profits, shifting the optimal trading strategy toward a portfolio mixing forward contracts and power sold in the spot market. Because of the size of the probability state space and the limited computing capabilities, the problem of the optimal trading strategy has not a closed form solution and thus, its determination is matter of current study. The increase in computing power and recent developments in Operational Research has brought new insights into the solution of such problems. In the past decade and by virtue of the ever increasing computational power, many methods emerged in different scientific fields with several different names: Reinforced Learning, QLearning, Neuro-Dynamic Programming, etc. All these methods were later brought together in what is currently known as Approximated Dynamic Programming (ADP) [2],[3]. These algorithms resign the exhaustive enumeration and calculation of the space-state typically performed by conventional DP. Instead, they iteratively approximate a function of the space state through stochastic simulation and statistical regression techniques, circumventing the dimensionality problem of DP. Although ADP algorithms are being used in several other fields of science, the application to design optimal trading strategies in power markets has not been proposed so far. In this chapter, ADP techniques are exploited to optimize the selling strategy of a power generator trading in a frictional market with transaction costs. Three available products are considered: selling in the spot market, and/or get involved in quarterly and one-year forward contracts. The objective of the generator is to maximize the expected profit while limiting financial risk. Decisions can be made only at the beginning of each month. At each decision stage, the current trading position can be changed at a cost in order to rebalance the portfolio.Fil: Gil Pugliese, Miguel Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina. Instituto F/elektrische Anlagen & Energiewirtschaft; AlemaniaFil: Olsina, Fernando Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; ArgentinaIntechOpenNezhad, Mohammad Saber Fallah2014info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookParthttp://purl.org/coar/resource_type/c_3248info:ar-repo/semantics/parteDeLibroapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/159835Gil Pugliese, Miguel Federico; Olsina, Fernando Gabriel; Risk-constrained forward trading optimization through stochastic approximate dynamic programming; IntechOpen; 2014; 91-124978-953-51-1364-5CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.intechopen.com/chapters/46367info:eu-repo/semantics/altIdentifier/doi/10.5772/57466info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:39:28Zoai:ri.conicet.gov.ar:11336/159835instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:39:28.508CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Risk-constrained forward trading optimization through stochastic approximate dynamic programming |
title |
Risk-constrained forward trading optimization through stochastic approximate dynamic programming |
spellingShingle |
Risk-constrained forward trading optimization through stochastic approximate dynamic programming Gil Pugliese, Miguel Federico APPROXIMATE DYNAMIC PROGRAMING MONTE CARLO POWER TRADING RISK-CONSTRAINED OPTIMIZATION |
title_short |
Risk-constrained forward trading optimization through stochastic approximate dynamic programming |
title_full |
Risk-constrained forward trading optimization through stochastic approximate dynamic programming |
title_fullStr |
Risk-constrained forward trading optimization through stochastic approximate dynamic programming |
title_full_unstemmed |
Risk-constrained forward trading optimization through stochastic approximate dynamic programming |
title_sort |
Risk-constrained forward trading optimization through stochastic approximate dynamic programming |
dc.creator.none.fl_str_mv |
Gil Pugliese, Miguel Federico Olsina, Fernando Gabriel |
author |
Gil Pugliese, Miguel Federico |
author_facet |
Gil Pugliese, Miguel Federico Olsina, Fernando Gabriel |
author_role |
author |
author2 |
Olsina, Fernando Gabriel |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Nezhad, Mohammad Saber Fallah |
dc.subject.none.fl_str_mv |
APPROXIMATE DYNAMIC PROGRAMING MONTE CARLO POWER TRADING RISK-CONSTRAINED OPTIMIZATION |
topic |
APPROXIMATE DYNAMIC PROGRAMING MONTE CARLO POWER TRADING RISK-CONSTRAINED OPTIMIZATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Since the mid-twentieth century, Dynamic Programming (DP) has proved to be a flexible and powerful approach to address optimal decisions problems. Nevertheless, a decisive drawback of the conventional DP is the need for exploring the whole state space in order to find the optimal solution. The immense amount of mathematical operations involved to solve real-scale problems, constrained the application of DP to small or highly simplified cases. Indeed, state space grows exponentially with the number of variables when considering multivariate optimization. The curse of dimensionality is a well-known limitation of conventional DP algorithms for tackling large-scale problems ubiquitous in real science and engineering applications. In the last decades, many new algorithms emerged in different branches of science to overcome the inherent limitations of conventional DP. Unlike conventional DP, these algorithms avoid enumerating and calculating every possible state of a system during the optimization process. Instead, they estimate relevant features of the state space. This approach circumvents the dimensionality limitations of the conventional DP while retaining many of its advantages. In this chapter, the application of advanced stochastic dynamic programming techniques to the optimization of the forward sell strategy of a power generator subjected to delivery risk is considered. The proposed approach allows rebalancing the portfolio during the period of analysis. In electricity markets, a power generator can sell in advance part or all its future energy production at a fixed price, hedging against the high price volatility of the spot market. The strategy of eliminating the price risk by selling in advance the entire production in the forward market to a fixed price is often thought as the minimum-risk trading policy. Nonetheless, it can be proven that this is not the case for most generators. The outages of the generation units and transmission lines, as well as unforeseen limitations in the primary energy supply expose generators to delivery risk [1]. Delivery risk considerably modifies the probability distribution of profits, shifting the optimal trading strategy toward a portfolio mixing forward contracts and power sold in the spot market. Because of the size of the probability state space and the limited computing capabilities, the problem of the optimal trading strategy has not a closed form solution and thus, its determination is matter of current study. The increase in computing power and recent developments in Operational Research has brought new insights into the solution of such problems. In the past decade and by virtue of the ever increasing computational power, many methods emerged in different scientific fields with several different names: Reinforced Learning, QLearning, Neuro-Dynamic Programming, etc. All these methods were later brought together in what is currently known as Approximated Dynamic Programming (ADP) [2],[3]. These algorithms resign the exhaustive enumeration and calculation of the space-state typically performed by conventional DP. Instead, they iteratively approximate a function of the space state through stochastic simulation and statistical regression techniques, circumventing the dimensionality problem of DP. Although ADP algorithms are being used in several other fields of science, the application to design optimal trading strategies in power markets has not been proposed so far. In this chapter, ADP techniques are exploited to optimize the selling strategy of a power generator trading in a frictional market with transaction costs. Three available products are considered: selling in the spot market, and/or get involved in quarterly and one-year forward contracts. The objective of the generator is to maximize the expected profit while limiting financial risk. Decisions can be made only at the beginning of each month. At each decision stage, the current trading position can be changed at a cost in order to rebalance the portfolio. Fil: Gil Pugliese, Miguel Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina. Instituto F/elektrische Anlagen & Energiewirtschaft; Alemania Fil: Olsina, Fernando Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina |
description |
Since the mid-twentieth century, Dynamic Programming (DP) has proved to be a flexible and powerful approach to address optimal decisions problems. Nevertheless, a decisive drawback of the conventional DP is the need for exploring the whole state space in order to find the optimal solution. The immense amount of mathematical operations involved to solve real-scale problems, constrained the application of DP to small or highly simplified cases. Indeed, state space grows exponentially with the number of variables when considering multivariate optimization. The curse of dimensionality is a well-known limitation of conventional DP algorithms for tackling large-scale problems ubiquitous in real science and engineering applications. In the last decades, many new algorithms emerged in different branches of science to overcome the inherent limitations of conventional DP. Unlike conventional DP, these algorithms avoid enumerating and calculating every possible state of a system during the optimization process. Instead, they estimate relevant features of the state space. This approach circumvents the dimensionality limitations of the conventional DP while retaining many of its advantages. In this chapter, the application of advanced stochastic dynamic programming techniques to the optimization of the forward sell strategy of a power generator subjected to delivery risk is considered. The proposed approach allows rebalancing the portfolio during the period of analysis. In electricity markets, a power generator can sell in advance part or all its future energy production at a fixed price, hedging against the high price volatility of the spot market. The strategy of eliminating the price risk by selling in advance the entire production in the forward market to a fixed price is often thought as the minimum-risk trading policy. Nonetheless, it can be proven that this is not the case for most generators. The outages of the generation units and transmission lines, as well as unforeseen limitations in the primary energy supply expose generators to delivery risk [1]. Delivery risk considerably modifies the probability distribution of profits, shifting the optimal trading strategy toward a portfolio mixing forward contracts and power sold in the spot market. Because of the size of the probability state space and the limited computing capabilities, the problem of the optimal trading strategy has not a closed form solution and thus, its determination is matter of current study. The increase in computing power and recent developments in Operational Research has brought new insights into the solution of such problems. In the past decade and by virtue of the ever increasing computational power, many methods emerged in different scientific fields with several different names: Reinforced Learning, QLearning, Neuro-Dynamic Programming, etc. All these methods were later brought together in what is currently known as Approximated Dynamic Programming (ADP) [2],[3]. These algorithms resign the exhaustive enumeration and calculation of the space-state typically performed by conventional DP. Instead, they iteratively approximate a function of the space state through stochastic simulation and statistical regression techniques, circumventing the dimensionality problem of DP. Although ADP algorithms are being used in several other fields of science, the application to design optimal trading strategies in power markets has not been proposed so far. In this chapter, ADP techniques are exploited to optimize the selling strategy of a power generator trading in a frictional market with transaction costs. Three available products are considered: selling in the spot market, and/or get involved in quarterly and one-year forward contracts. The objective of the generator is to maximize the expected profit while limiting financial risk. Decisions can be made only at the beginning of each month. At each decision stage, the current trading position can be changed at a cost in order to rebalance the portfolio. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/bookPart http://purl.org/coar/resource_type/c_3248 info:ar-repo/semantics/parteDeLibro |
status_str |
publishedVersion |
format |
bookPart |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/159835 Gil Pugliese, Miguel Federico; Olsina, Fernando Gabriel; Risk-constrained forward trading optimization through stochastic approximate dynamic programming; IntechOpen; 2014; 91-124 978-953-51-1364-5 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/159835 |
identifier_str_mv |
Gil Pugliese, Miguel Federico; Olsina, Fernando Gabriel; Risk-constrained forward trading optimization through stochastic approximate dynamic programming; IntechOpen; 2014; 91-124 978-953-51-1364-5 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.intechopen.com/chapters/46367 info:eu-repo/semantics/altIdentifier/doi/10.5772/57466 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IntechOpen |
publisher.none.fl_str_mv |
IntechOpen |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613248976945152 |
score |
13.070432 |