Biological motion coding in the brain: Analysis of visually driven EEG functional networks

Autores
Fraiman Borrazás, Daniel Edmundo; Saunier, Ghislain; Martins, Eduardo F.; Vargas, Claudia D.
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Herein, we address the time evolution of brain functional networks computed from electroencephalographic activity driven by visual stimuli. We describe how these functional network signatures change in fast scale when confronted with point-light display stimuli depicting biological motion (BM) as opposed to scrambled motion (SM). Whereas global network measures (average path length, average clustering coefficient, and average betweenness) computed as a function of time did not discriminate between BM and SM, local node properties did. Comparing the network local measures of the BM condition with those of the SM condition, we found higher degree and betweenness values in the left frontal (F7) electrode, as well as a higher clustering coefficient in the right occipital (O2) electrode, for the SM condition. Conversely, for the BM condition, we found higher degree values in central parietal (Pz) electrode and a higher clustering coefficient in the left parietal (P3) electrode. These results are discussed in the context of the brain networks involved in encoding BM versus SM.
Fil: Fraiman Borrazás, Daniel Edmundo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de San Andrés. Departamento de Matemáticas y Ciencias; Argentina
Fil: Saunier, Ghislain. Universidade Federal do Rio de Janeiro; Brasil
Fil: Martins, Eduardo F.. Universidade Federal do Rio de Janeiro; Brasil
Fil: Vargas, Claudia D.. Universidade Federal do Rio de Janeiro; Brasil
Materia
EEG functional networks
biological motion
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/85763

id CONICETDig_52ceeeb04efb73c6d9a5fcb0f91c9328
oai_identifier_str oai:ri.conicet.gov.ar:11336/85763
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Biological motion coding in the brain: Analysis of visually driven EEG functional networksFraiman Borrazás, Daniel EdmundoSaunier, GhislainMartins, Eduardo F.Vargas, Claudia D.EEG functional networksbiological motionhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Herein, we address the time evolution of brain functional networks computed from electroencephalographic activity driven by visual stimuli. We describe how these functional network signatures change in fast scale when confronted with point-light display stimuli depicting biological motion (BM) as opposed to scrambled motion (SM). Whereas global network measures (average path length, average clustering coefficient, and average betweenness) computed as a function of time did not discriminate between BM and SM, local node properties did. Comparing the network local measures of the BM condition with those of the SM condition, we found higher degree and betweenness values in the left frontal (F7) electrode, as well as a higher clustering coefficient in the right occipital (O2) electrode, for the SM condition. Conversely, for the BM condition, we found higher degree values in central parietal (Pz) electrode and a higher clustering coefficient in the left parietal (P3) electrode. These results are discussed in the context of the brain networks involved in encoding BM versus SM.Fil: Fraiman Borrazás, Daniel Edmundo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de San Andrés. Departamento de Matemáticas y Ciencias; ArgentinaFil: Saunier, Ghislain. Universidade Federal do Rio de Janeiro; BrasilFil: Martins, Eduardo F.. Universidade Federal do Rio de Janeiro; BrasilFil: Vargas, Claudia D.. Universidade Federal do Rio de Janeiro; BrasilPublic Library of Science2014-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/85763Fraiman Borrazás, Daniel Edmundo; Saunier, Ghislain; Martins, Eduardo F.; Vargas, Claudia D.; Biological motion coding in the brain: Analysis of visually driven EEG functional networks; Public Library of Science; Plos One; 9; 1; 1-2014; 1-91932-6203CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0084612info:eu-repo/semantics/altIdentifier/url/https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0084612info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:36:16Zoai:ri.conicet.gov.ar:11336/85763instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:36:16.82CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Biological motion coding in the brain: Analysis of visually driven EEG functional networks
title Biological motion coding in the brain: Analysis of visually driven EEG functional networks
spellingShingle Biological motion coding in the brain: Analysis of visually driven EEG functional networks
Fraiman Borrazás, Daniel Edmundo
EEG functional networks
biological motion
title_short Biological motion coding in the brain: Analysis of visually driven EEG functional networks
title_full Biological motion coding in the brain: Analysis of visually driven EEG functional networks
title_fullStr Biological motion coding in the brain: Analysis of visually driven EEG functional networks
title_full_unstemmed Biological motion coding in the brain: Analysis of visually driven EEG functional networks
title_sort Biological motion coding in the brain: Analysis of visually driven EEG functional networks
dc.creator.none.fl_str_mv Fraiman Borrazás, Daniel Edmundo
Saunier, Ghislain
Martins, Eduardo F.
Vargas, Claudia D.
author Fraiman Borrazás, Daniel Edmundo
author_facet Fraiman Borrazás, Daniel Edmundo
Saunier, Ghislain
Martins, Eduardo F.
Vargas, Claudia D.
author_role author
author2 Saunier, Ghislain
Martins, Eduardo F.
Vargas, Claudia D.
author2_role author
author
author
dc.subject.none.fl_str_mv EEG functional networks
biological motion
topic EEG functional networks
biological motion
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Herein, we address the time evolution of brain functional networks computed from electroencephalographic activity driven by visual stimuli. We describe how these functional network signatures change in fast scale when confronted with point-light display stimuli depicting biological motion (BM) as opposed to scrambled motion (SM). Whereas global network measures (average path length, average clustering coefficient, and average betweenness) computed as a function of time did not discriminate between BM and SM, local node properties did. Comparing the network local measures of the BM condition with those of the SM condition, we found higher degree and betweenness values in the left frontal (F7) electrode, as well as a higher clustering coefficient in the right occipital (O2) electrode, for the SM condition. Conversely, for the BM condition, we found higher degree values in central parietal (Pz) electrode and a higher clustering coefficient in the left parietal (P3) electrode. These results are discussed in the context of the brain networks involved in encoding BM versus SM.
Fil: Fraiman Borrazás, Daniel Edmundo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de San Andrés. Departamento de Matemáticas y Ciencias; Argentina
Fil: Saunier, Ghislain. Universidade Federal do Rio de Janeiro; Brasil
Fil: Martins, Eduardo F.. Universidade Federal do Rio de Janeiro; Brasil
Fil: Vargas, Claudia D.. Universidade Federal do Rio de Janeiro; Brasil
description Herein, we address the time evolution of brain functional networks computed from electroencephalographic activity driven by visual stimuli. We describe how these functional network signatures change in fast scale when confronted with point-light display stimuli depicting biological motion (BM) as opposed to scrambled motion (SM). Whereas global network measures (average path length, average clustering coefficient, and average betweenness) computed as a function of time did not discriminate between BM and SM, local node properties did. Comparing the network local measures of the BM condition with those of the SM condition, we found higher degree and betweenness values in the left frontal (F7) electrode, as well as a higher clustering coefficient in the right occipital (O2) electrode, for the SM condition. Conversely, for the BM condition, we found higher degree values in central parietal (Pz) electrode and a higher clustering coefficient in the left parietal (P3) electrode. These results are discussed in the context of the brain networks involved in encoding BM versus SM.
publishDate 2014
dc.date.none.fl_str_mv 2014-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/85763
Fraiman Borrazás, Daniel Edmundo; Saunier, Ghislain; Martins, Eduardo F.; Vargas, Claudia D.; Biological motion coding in the brain: Analysis of visually driven EEG functional networks; Public Library of Science; Plos One; 9; 1; 1-2014; 1-9
1932-6203
CONICET Digital
CONICET
url http://hdl.handle.net/11336/85763
identifier_str_mv Fraiman Borrazás, Daniel Edmundo; Saunier, Ghislain; Martins, Eduardo F.; Vargas, Claudia D.; Biological motion coding in the brain: Analysis of visually driven EEG functional networks; Public Library of Science; Plos One; 9; 1; 1-2014; 1-9
1932-6203
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0084612
info:eu-repo/semantics/altIdentifier/url/https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0084612
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Public Library of Science
publisher.none.fl_str_mv Public Library of Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613136459497472
score 13.070432