Using multiple frequency bins for stabilization of FD-ICA algorithms
- Autores
- Di Persia, Leandro Ezequiel; Milone, Diego Humberto
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In the frequency domain independent component analysis approaches for audiosources separation, the convolutive mixing problem is replaced by thesolution of several instantaneous mixing problems, one for each frequencybin of the short time Fourier transform. This methodology yields good resultsbut requires the solution of the permutation ambiguity. Moreover, theperformance of the separation algorithms for each bin is not guaranteed tobe equivalent, thus some bins can have worse results than others. In thispaper a technique based on data from multiple bins is proposed to addressthese issues. The use of multiple bin information produces a coupling of theseparation, resulting in more stable separation matrices and reducing the occurrence of permutations, but increasing in computational cost. This can bemitigated by a sub sampling of the multiple bins information. The resultsshow that both approaches are beneficial for the frequency domain ICA approach,producing better separation in terms of objective quality measures.
Fil: Di Persia, Leandro Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina - Materia
-
Audio Sources Separation
Frequency Domain Independent Component Analysis
Multiple Bins - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/47800
Ver los metadatos del registro completo
id |
CONICETDig_d512d0f37f44073b6c9c727c59b5cf06 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/47800 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Using multiple frequency bins for stabilization of FD-ICA algorithmsDi Persia, Leandro EzequielMilone, Diego HumbertoAudio Sources SeparationFrequency Domain Independent Component AnalysisMultiple Binshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1In the frequency domain independent component analysis approaches for audiosources separation, the convolutive mixing problem is replaced by thesolution of several instantaneous mixing problems, one for each frequencybin of the short time Fourier transform. This methodology yields good resultsbut requires the solution of the permutation ambiguity. Moreover, theperformance of the separation algorithms for each bin is not guaranteed tobe equivalent, thus some bins can have worse results than others. In thispaper a technique based on data from multiple bins is proposed to addressthese issues. The use of multiple bin information produces a coupling of theseparation, resulting in more stable separation matrices and reducing the occurrence of permutations, but increasing in computational cost. This can bemitigated by a sub sampling of the multiple bins information. The resultsshow that both approaches are beneficial for the frequency domain ICA approach,producing better separation in terms of objective quality measures.Fil: Di Persia, Leandro Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaElsevier Science2016-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/47800Di Persia, Leandro Ezequiel; Milone, Diego Humberto; Using multiple frequency bins for stabilization of FD-ICA algorithms; Elsevier Science; Signal Processing; 119; 2-2016; 162-1680165-1684CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.sigpro.2015.07.025info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0165168415002625info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:27:54Zoai:ri.conicet.gov.ar:11336/47800instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:27:54.819CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Using multiple frequency bins for stabilization of FD-ICA algorithms |
title |
Using multiple frequency bins for stabilization of FD-ICA algorithms |
spellingShingle |
Using multiple frequency bins for stabilization of FD-ICA algorithms Di Persia, Leandro Ezequiel Audio Sources Separation Frequency Domain Independent Component Analysis Multiple Bins |
title_short |
Using multiple frequency bins for stabilization of FD-ICA algorithms |
title_full |
Using multiple frequency bins for stabilization of FD-ICA algorithms |
title_fullStr |
Using multiple frequency bins for stabilization of FD-ICA algorithms |
title_full_unstemmed |
Using multiple frequency bins for stabilization of FD-ICA algorithms |
title_sort |
Using multiple frequency bins for stabilization of FD-ICA algorithms |
dc.creator.none.fl_str_mv |
Di Persia, Leandro Ezequiel Milone, Diego Humberto |
author |
Di Persia, Leandro Ezequiel |
author_facet |
Di Persia, Leandro Ezequiel Milone, Diego Humberto |
author_role |
author |
author2 |
Milone, Diego Humberto |
author2_role |
author |
dc.subject.none.fl_str_mv |
Audio Sources Separation Frequency Domain Independent Component Analysis Multiple Bins |
topic |
Audio Sources Separation Frequency Domain Independent Component Analysis Multiple Bins |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In the frequency domain independent component analysis approaches for audiosources separation, the convolutive mixing problem is replaced by thesolution of several instantaneous mixing problems, one for each frequencybin of the short time Fourier transform. This methodology yields good resultsbut requires the solution of the permutation ambiguity. Moreover, theperformance of the separation algorithms for each bin is not guaranteed tobe equivalent, thus some bins can have worse results than others. In thispaper a technique based on data from multiple bins is proposed to addressthese issues. The use of multiple bin information produces a coupling of theseparation, resulting in more stable separation matrices and reducing the occurrence of permutations, but increasing in computational cost. This can bemitigated by a sub sampling of the multiple bins information. The resultsshow that both approaches are beneficial for the frequency domain ICA approach,producing better separation in terms of objective quality measures. Fil: Di Persia, Leandro Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina |
description |
In the frequency domain independent component analysis approaches for audiosources separation, the convolutive mixing problem is replaced by thesolution of several instantaneous mixing problems, one for each frequencybin of the short time Fourier transform. This methodology yields good resultsbut requires the solution of the permutation ambiguity. Moreover, theperformance of the separation algorithms for each bin is not guaranteed tobe equivalent, thus some bins can have worse results than others. In thispaper a technique based on data from multiple bins is proposed to addressthese issues. The use of multiple bin information produces a coupling of theseparation, resulting in more stable separation matrices and reducing the occurrence of permutations, but increasing in computational cost. This can bemitigated by a sub sampling of the multiple bins information. The resultsshow that both approaches are beneficial for the frequency domain ICA approach,producing better separation in terms of objective quality measures. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/47800 Di Persia, Leandro Ezequiel; Milone, Diego Humberto; Using multiple frequency bins for stabilization of FD-ICA algorithms; Elsevier Science; Signal Processing; 119; 2-2016; 162-168 0165-1684 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/47800 |
identifier_str_mv |
Di Persia, Leandro Ezequiel; Milone, Diego Humberto; Using multiple frequency bins for stabilization of FD-ICA algorithms; Elsevier Science; Signal Processing; 119; 2-2016; 162-168 0165-1684 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.sigpro.2015.07.025 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0165168415002625 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083420465135616 |
score |
13.22299 |